Abstract

Perturbation based nonlinearity pre-compensation has been performed for a 128 Gbit/s single-carrier dual-polarization 16-ary quadrature-amplitude-modulation (DP 16-QAM) signal. Without any performance degradation, a complexity reduction factor of 6.8 has been demonstrated for a transmission distance of 3600 km by combining symmetric electronic dispersion compensation and root-raised-cosine pulse shaping with a roll-off factor of 0.1. Transmission over 4200 km of standard single-mode fiber with EDFA amplification was achieved for the 128 Gbit/s DP 16-QAM signals with a forward error correction (FEC) threshold of 2 × 10−2.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mecozzi, R.-J. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightwave Technol. 30(12), 2011–2024 (2012).
    [CrossRef]
  2. D. Rafique, A. D. Ellis, “Nonlinearity compensation in multi-rate 28 Gbaud WDM systems employing optical and digital techniques under diverse link configurations,” Opt. Express 19(18), 16919–16926 (2011).
    [CrossRef] [PubMed]
  3. L. Zhu, G. Li, “Nonlinearity compensation using dispersion-folded digital backward propagation,” Opt. Express 20(13), 14362–14370 (2012).
    [CrossRef] [PubMed]
  4. Y. Gao, J. C. Cartledge, J. D. Downie, J. E. Hurley, D. Pikula, S. S.-H. Yam, “Nonlinearity compensation of 224 Gb/s dual-polarization 16-QAM Transmission over 2700 km,” IEEE Photon. Technol. Lett. 25(1), 14–17 (2013).
    [CrossRef]
  5. E. Ip, J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [CrossRef]
  6. L. B. Du, A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express 18(16), 17075–17088 (2010).
    [CrossRef] [PubMed]
  7. Y. Gao, J. H. Ke, K. P. Zhong, J. C. Cartledge, S. S.-H. Yam, “Assessment of intrachannel nonlinear compensation for 112 Gb/s dual-polarization 16QAM systems,” J. Lightwave Technol. 30(24), 3902–3910 (2012).
    [CrossRef]
  8. Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightwave Technol. 29(17), 2570–2576 (2011).
    [CrossRef]
  9. Y. Gao, J. C. Cartledge, A. S. Karar, and S. S.-H. Yam, “Reducing the complexity of nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Proc. Eur. Conf. Opt. Commun., PD3.E.5 (2013).
    [CrossRef]
  10. X. Liu, S. Chandrasekhar, P. J. Winzer, R. W. Tkach, and A. R. Chraplyvy, “406.6-Gb/s PDM-BPSK superchannel transmission over 12,800-km TWRS fiber via nonlinear noise squeezing,” Proc. Conf. Opt. Fiber Commun., PDP5B.10 (2013).
    [CrossRef]
  11. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
    [CrossRef]
  12. H. Lu, Y. Mori, C. Han, and K. Kikuchi, “Novel polarization-diversity scheme based on mutual phase conjugation for fiber-nonlinearity mitigation in ultra-long coherent optical transmission systems,” Proc. Eur. Conf. Opt. Commun., We.3.C.3 (2013).
  13. Y. Fan, L. Dou, Z. Tao, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Modulation format dependent phase noise caused by intra-channel nonlinearity,”, ” Proc. Eur. Conf. Opt. Commun., We.2.C.3. (2012).
    [CrossRef]
  14. L. Dou, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, ‘Pre-distortion method for intra-channel nonlinearity compensation with phase-rotated perturbation term’, Proc. Conf. Opt. Fiber Commun., OTh3C.2 (2012).
    [CrossRef]
  15. T. Oyama, H. Nakashima, T. Hoshida, Z. Tao, C. Ohshima, and J. C. Rasmussen, “Efficient transmitter-side nonlinear equalizer for 16QAM,” Proc. Eur. Conf. Opt. Commun., We.3.C.1 (2013).
  16. A. Mecozzi, C. B. Clausen, M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000).
    [CrossRef]
  17. I. Fatadin, S. J. Savory, D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
    [CrossRef]
  18. H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997), section 5.4.
  19. M. Selmi, Y. Jaouën, P. Cibalt, “Accurate digital frequency offset estimator for coherent polmux QAM transmission systems,” Proc. Eur. Conf. Opt. Commun., P3.08 (2009).
  20. J. H. Ke, K. P. Zhong, Y. Gao, J. C. Cartledge, A. S. Karar, M. A. Rezania, “Linewidth-tolerant and low-complexity two-stage carrier phase estimation for dual-polarization 16-QAM coherent optical fiber communications,” J. Lightwave Technol. 30(24), 3987–3992 (2012).
    [CrossRef]
  21. I. Fatadin, D. Ives, S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
    [CrossRef]

2013 (2)

Y. Gao, J. C. Cartledge, J. D. Downie, J. E. Hurley, D. Pikula, S. S.-H. Yam, “Nonlinearity compensation of 224 Gb/s dual-polarization 16-QAM Transmission over 2700 km,” IEEE Photon. Technol. Lett. 25(1), 14–17 (2013).
[CrossRef]

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[CrossRef]

2012 (4)

2011 (2)

2010 (1)

2009 (1)

2008 (2)

I. Fatadin, S. J. Savory, D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

E. Ip, J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
[CrossRef]

2000 (1)

A. Mecozzi, C. B. Clausen, M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000).
[CrossRef]

Cartledge, J. C.

Chandrasekhar, S.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[CrossRef]

Chraplyvy, A. R.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[CrossRef]

Cibalt, P.

M. Selmi, Y. Jaouën, P. Cibalt, “Accurate digital frequency offset estimator for coherent polmux QAM transmission systems,” Proc. Eur. Conf. Opt. Commun., P3.08 (2009).

Clausen, C. B.

A. Mecozzi, C. B. Clausen, M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000).
[CrossRef]

Dou, L.

Downie, J. D.

Y. Gao, J. C. Cartledge, J. D. Downie, J. E. Hurley, D. Pikula, S. S.-H. Yam, “Nonlinearity compensation of 224 Gb/s dual-polarization 16-QAM Transmission over 2700 km,” IEEE Photon. Technol. Lett. 25(1), 14–17 (2013).
[CrossRef]

Du, L. B.

Ellis, A. D.

Essiambre, R.-J.

Fatadin, I.

I. Fatadin, D. Ives, S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[CrossRef]

I. Fatadin, S. J. Savory, D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

Gao, Y.

Hoshida, T.

Hurley, J. E.

Y. Gao, J. C. Cartledge, J. D. Downie, J. E. Hurley, D. Pikula, S. S.-H. Yam, “Nonlinearity compensation of 224 Gb/s dual-polarization 16-QAM Transmission over 2700 km,” IEEE Photon. Technol. Lett. 25(1), 14–17 (2013).
[CrossRef]

Ip, E.

Ives, D.

I. Fatadin, D. Ives, S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[CrossRef]

I. Fatadin, S. J. Savory, D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

Jaouën, Y.

M. Selmi, Y. Jaouën, P. Cibalt, “Accurate digital frequency offset estimator for coherent polmux QAM transmission systems,” Proc. Eur. Conf. Opt. Commun., P3.08 (2009).

Kahn, J. M.

Karar, A. S.

Ke, J. H.

Li, G.

Li, L.

Liu, X.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[CrossRef]

Lowery, A. J.

Mecozzi, A.

A. Mecozzi, R.-J. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightwave Technol. 30(12), 2011–2024 (2012).
[CrossRef]

A. Mecozzi, C. B. Clausen, M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000).
[CrossRef]

Pikula, D.

Y. Gao, J. C. Cartledge, J. D. Downie, J. E. Hurley, D. Pikula, S. S.-H. Yam, “Nonlinearity compensation of 224 Gb/s dual-polarization 16-QAM Transmission over 2700 km,” IEEE Photon. Technol. Lett. 25(1), 14–17 (2013).
[CrossRef]

Rafique, D.

Rasmussen, J. C.

Rezania, M. A.

Savory, S. J.

I. Fatadin, D. Ives, S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[CrossRef]

I. Fatadin, S. J. Savory, D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

Selmi, M.

M. Selmi, Y. Jaouën, P. Cibalt, “Accurate digital frequency offset estimator for coherent polmux QAM transmission systems,” Proc. Eur. Conf. Opt. Commun., P3.08 (2009).

Shtaif, M.

A. Mecozzi, C. B. Clausen, M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000).
[CrossRef]

Tao, Z.

Tkach, R. W.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[CrossRef]

Winzer, P. J.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[CrossRef]

Yam, S. S.-H.

Y. Gao, J. C. Cartledge, J. D. Downie, J. E. Hurley, D. Pikula, S. S.-H. Yam, “Nonlinearity compensation of 224 Gb/s dual-polarization 16-QAM Transmission over 2700 km,” IEEE Photon. Technol. Lett. 25(1), 14–17 (2013).
[CrossRef]

Y. Gao, J. H. Ke, K. P. Zhong, J. C. Cartledge, S. S.-H. Yam, “Assessment of intrachannel nonlinear compensation for 112 Gb/s dual-polarization 16QAM systems,” J. Lightwave Technol. 30(24), 3902–3910 (2012).
[CrossRef]

Yan, W.

Zhong, K. P.

Zhu, L.

IEEE Photon. Technol. Lett. (3)

Y. Gao, J. C. Cartledge, J. D. Downie, J. E. Hurley, D. Pikula, S. S.-H. Yam, “Nonlinearity compensation of 224 Gb/s dual-polarization 16-QAM Transmission over 2700 km,” IEEE Photon. Technol. Lett. 25(1), 14–17 (2013).
[CrossRef]

A. Mecozzi, C. B. Clausen, M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000).
[CrossRef]

I. Fatadin, S. J. Savory, D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

J. Lightwave Technol. (6)

Nat. Photonics (1)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[CrossRef]

Opt. Express (3)

Other (8)

Y. Gao, J. C. Cartledge, A. S. Karar, and S. S.-H. Yam, “Reducing the complexity of nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Proc. Eur. Conf. Opt. Commun., PD3.E.5 (2013).
[CrossRef]

X. Liu, S. Chandrasekhar, P. J. Winzer, R. W. Tkach, and A. R. Chraplyvy, “406.6-Gb/s PDM-BPSK superchannel transmission over 12,800-km TWRS fiber via nonlinear noise squeezing,” Proc. Conf. Opt. Fiber Commun., PDP5B.10 (2013).
[CrossRef]

H. Lu, Y. Mori, C. Han, and K. Kikuchi, “Novel polarization-diversity scheme based on mutual phase conjugation for fiber-nonlinearity mitigation in ultra-long coherent optical transmission systems,” Proc. Eur. Conf. Opt. Commun., We.3.C.3 (2013).

Y. Fan, L. Dou, Z. Tao, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Modulation format dependent phase noise caused by intra-channel nonlinearity,”, ” Proc. Eur. Conf. Opt. Commun., We.2.C.3. (2012).
[CrossRef]

L. Dou, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, ‘Pre-distortion method for intra-channel nonlinearity compensation with phase-rotated perturbation term’, Proc. Conf. Opt. Fiber Commun., OTh3C.2 (2012).
[CrossRef]

T. Oyama, H. Nakashima, T. Hoshida, Z. Tao, C. Ohshima, and J. C. Rasmussen, “Efficient transmitter-side nonlinear equalizer for 16QAM,” Proc. Eur. Conf. Opt. Commun., We.3.C.1 (2013).

H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997), section 5.4.

M. Selmi, Y. Jaouën, P. Cibalt, “Accurate digital frequency offset estimator for coherent polmux QAM transmission systems,” Proc. Eur. Conf. Opt. Commun., P3.08 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Example of normalized C m,n coefficients for L= 3600 km with SSMF.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Back-to-back constellation diagrams for a 128 Gbit/s DP 16-QAM signal with a RRC pulse shape (roll-off factor of 0.1).

Fig. 4
Fig. 4

Measured optical spectrum for a 128 Gbit/s DP 16-QAM signal with a RRC pulse shape (roll-off factor of 0.1).

Fig. 5
Fig. 5

Dependence of the BER on the OSNR for a 128 Gbit/s DP 16-QAM signal with a RRC pulse shape (roll-off factor of 0.1).

Fig. 6
Fig. 6

Dependence of the BER on the optical launch power for a fiber length of 3600 km.

Fig. 7
Fig. 7

Dependence of the BER at optimum launch power on the fiber length.

Fig. 8
Fig. 8

Dependence of the required number of summation terms on the fiber length.

Fig. 9
Fig. 9

Dependence of the BER and required number of summation terms on the C m,n selection criterion for three different algorithms.

Fig. 10
Fig. 10

Dependence of the BER and required number of summation terms on the C m,n selection criterion for three fiber lengths.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

A 0,x out =( A 0,x in A 0,x IFWM )exp( Δ ψ 0,x )( A 0,x in A 0,x IFWM )( 1Δ ψ 0,x )
A 0,y out =( A 0,y in A 0,y IFWM )exp( Δ ψ 0,y )( A 0,y in A 0,y IFWM )( 1Δ ψ 0,y )
Δ ψ 0,x = ψ 0,x E{ ( ψ 0,x ) }
Δ ψ 0,y = ψ 0,y E{ ( ψ 0,y ) }
ψ 0,x = P 0 3/2 [ C 0,0 ( | A 0,x | 2 + | A 0,y | 2 )+ m0 C m,0 ( 2 | A m,x | 2 + | A m,y | 2 ) ]
ψ 0,y = P 0 3/2 [ C 0,0 ( | A 0,x | 2 + | A 0,y | 2 )+ m0 C m,0 ( 2 | A m,y | 2 + | A m,x | 2 ) ]
A 0,x IFWM = P 0 3/2 [ m0,n0 C m,n ( A n,x A m,x A m+n,x * + A n,y A m,x A m+n,y * ) + m0 C m,0 ( A 0,y A m,x A m,y * ) ]
A 0,y IFWM = P 0 3/2 [ m0,n0 C m,n ( A n,y A m,y A m+n,y * + A n,x A m,y A m+n,x * ) + m0 C m,0 ( A 0,x A m,y A m,x * ) ]
A 0,x,SEDC IFWM = A 0,x,1st IFWM + A 0,x,2nd IFWM
A 0,x,1st IFWM = P 0 3/2 [ m0,n0 C m,n ( L 2 )( A n,x A m,x A m+n,x * + A n,y A m,x A m+n,y * ) + m0 C m,0 ( L 2 )( A 0,y A m,x A m,y * ) ]
A 0,x,2st IFWM = P 0 3/2 [ m0,n0 C m,n ( L 2 )( A n,x A m,x A m+n,x * + A n,y A m,x A m+n,y * ) + m0 C m,0 ( L 2 )( A 0,y A m,x A m,y * ) ]
C m,n ( L 2 )+ C m,n ( L 2 )=2iIm[ C m,n ( L 2 ) ]
A 0,x,SEDC IFWM =2i P 0 3/2 [ m0,n0 Im[ C m,n ( L 2 ) ]( A n,x A m,x A m+n,x * + A n,y A m,x A m+n,y * ) + m0 Im[ C m,0 ( L 2 ) ]( A 0,y A m,x A m,y * ) ]
ψ 0,x,SEDC =2 P 0 3/2 [ C 0,0 ( L 2 )( | A 0,x | 2 + | A 0,y | 2 )+ m0 C m,0 ( L 2 )( 2 | A m,x | 2 + | A m,y | 2 ) ]
C m,n (z)=iγk[ 0 L span dz' f pd ( z' )/ L span ] 0 z dz' I m,n ( z' )
I m,n (z)= dt u 0 * ( z,t ) u 0 (z,t T n ) u 0 (z,t T m ) u 0 * ( z,t T m+n )

Metrics