Abstract

Bloch surface wave (BSW) sensors to be used in biochemical analytics are discussed in angularly resolved detection mode and are compared to surface plasmon resonance (SPR) sensors. BSW supported at the surface of a dielectric thin film stack feature many degrees of design freedom that enable tuning of resonance properties. In order to obtain a figure of merit for such optimization, the measurement uncertainty depending on resonance width and depth is deduced from different numerical models. This yields a limit of detection which depends on the sensor’s free measurement range and which is compared to a figure of merit derived previously. Stack design is illustrated for a BSW supporting thin film stack and is compared to the performance of a gold thin film for SPR sensing. Maximum sensitivity is obtained for a variety of stacks with the resonance positioned slightly above the TIR critical angle. Very narrow resonance widths of BSW sensors require sufficient sampling but are also associated with long surface wave propagation lengths as the limiting parameter for the performance of this kind of sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of thickness disorder on the performance of photonic crystal surface wave sensors

Aleksei Anopchenko, Agostino Occhicone, Riccardo Rizzo, Alberto Sinibaldi, Giovanni Figliozzi, Norbert Danz, Peter Munzert, and Francesco Michelotti
Opt. Express 24(7) 7728-7742 (2016)

Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry

Yanhui Li, Tianlin Yang, Zhiyong Pang, Guiqiang Du, Shumei Song, and Shenghao Han
Opt. Express 22(18) 21403-21410 (2014)

Optimal self-referenced sensing using long- and short- range surface plasmons

J. T. Hastings, J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law, and L. G. Bachas
Opt. Express 15(26) 17661-17672 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1-2), 3–15 (1999).
    [Crossref]
  3. J. Homola and M. Piliarik, “Surface plasmon resonance (SPR) sensors,” Springer Ser. Chem. Sens. Biosens. 4, 45–67 (2006).
    [Crossref]
  4. C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
    [Crossref]
  5. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
    [Crossref] [PubMed]
  6. S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel) 11(12), 1565–1588 (2011).
    [Crossref] [PubMed]
  7. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
    [Crossref]
  8. V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97(25), 253904 (2006).
    [Crossref] [PubMed]
  9. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic crystal,” Sens. Act. B 105(2), 360–364 (2005).
    [Crossref]
  10. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
    [Crossref] [PubMed]
  11. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
    [Crossref]
  12. F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
    [Crossref] [PubMed]
  13. V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
    [Crossref] [PubMed]
  14. A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
    [Crossref] [PubMed]
  15. C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
    [Crossref]
  16. Y. Wan, Z. Zheng, W. Kong, X. Zhao, Y. Liu, Y. Bian, and J. Liu, “Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave,” Opt. Express 20(8), 8998–9003 (2012).
    [Crossref] [PubMed]
  17. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B 174, 292–298 (2012).
    [Crossref]
  18. P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
    [Crossref]
  19. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
    [Crossref] [PubMed]
  20. Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103, 04116 (2013).
  21. V. N. Konopsky and E. V. Alieva, “Long-range plasmons in lossy metal films on photonic crystal surfaces,” Opt. Lett. 34(4), 479–481 (2009).
    [Crossref] [PubMed]
  22. V. N. Konopsky and E. V. Alieva, “Observation of fine interference structures at total internal reflection of focused light beams,” Phys. Rev. A 86(6), 063807 (2012).
    [Crossref]
  23. A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
    [Crossref] [PubMed]
  24. F. Michelotti and E. Descrovi, “Temperature stability of Bloch surface wave biosensors,” Appl. Phys. Lett. 99(23), 231107 (2011).
    [Crossref]
  25. M. B. Miller and Y.-W. Tang, “Basic concepts of microarrays and potential applications in clinical microbiology,” Clin. Microbiol. Rev. 22(4), 611–633 (2009).
    [Crossref] [PubMed]
  26. G. Nenninger, J. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002).
    [Crossref]
  27. K. Johansen, R. Stalberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: Instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
    [Crossref]
  28. N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
    [Crossref]
  29. W. H. Press, S. A. Teukolsky, W. T. Vetterlin, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University, 1992).
  30. R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
    [Crossref]
  31. F. Remy-Martin, M. El Osta, G. Lucchi, R. Zeggari, T. Leblois, S. Bellon, P. Ducoroy, and W. Boireau, “Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma,” Anal. Bioanal. Chem. 404(2), 423–432 (2012).
    [Crossref] [PubMed]
  32. B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71(18), 3928–3934 (1999).
    [Crossref]
  33. E. Fu, T. Chinowsky, J. Foley, J. Weinstein, and P. Yager, “Characterization of a wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 75(7), 2300 (2004).
    [Crossref]
  34. A. N. Naimushin, S. D. Soelberg, D. K. Nguyen, L. Dunlap, D. Bartholomew, J. Elkind, J. Melendez, and C. E. Furlong, “Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor,” Biosens. Bioelectron. 17(6-7), 573–584 (2002).
    [Crossref] [PubMed]
  35. T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
    [Crossref] [PubMed]
  36. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1991)
  37. ZEMAX software distributed by Radiant Zemax, Redmond, USA ( www.radiantzemax.com )
  38. T. M. Chinowski, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Act. B 91(1-3), 266–274 (2003).
    [Crossref]
  39. M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24(5), 1399–1404 (2009).
    [Crossref] [PubMed]
  40. M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
    [Crossref] [PubMed]
  41. P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma-assisted coating processes,” Surf. Coat. Tech. 174–175, 1048–1052 (2003).
    [Crossref]
  42. H. Raether, “Surface Plasmons on smooth and rough surfaces and on gratings,” Springer Tracts Mod. Phys. 111, 1–133 (1988).
  43. D. Michaelis and I. O. F. Fraunhofer, personal communication (2014); manuscript in preparation.
  44. R. Ulrich, “Theory of the prism-film coupler by plane-wave analysis,” J. Opt. Soc. Am. 60(10), 1337–1350 (1970).
    [Crossref]

2014 (2)

2013 (5)

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103, 04116 (2013).

2012 (4)

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B 174, 292–298 (2012).
[Crossref]

F. Remy-Martin, M. El Osta, G. Lucchi, R. Zeggari, T. Leblois, S. Bellon, P. Ducoroy, and W. Boireau, “Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma,” Anal. Bioanal. Chem. 404(2), 423–432 (2012).
[Crossref] [PubMed]

V. N. Konopsky and E. V. Alieva, “Observation of fine interference structures at total internal reflection of focused light beams,” Phys. Rev. A 86(6), 063807 (2012).
[Crossref]

Y. Wan, Z. Zheng, W. Kong, X. Zhao, Y. Liu, Y. Bian, and J. Liu, “Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave,” Opt. Express 20(8), 8998–9003 (2012).
[Crossref] [PubMed]

2011 (3)

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

F. Michelotti and E. Descrovi, “Temperature stability of Bloch surface wave biosensors,” Appl. Phys. Lett. 99(23), 231107 (2011).
[Crossref]

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel) 11(12), 1565–1588 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (6)

M. B. Miller and Y.-W. Tang, “Basic concepts of microarrays and potential applications in clinical microbiology,” Clin. Microbiol. Rev. 22(4), 611–633 (2009).
[Crossref] [PubMed]

V. N. Konopsky and E. V. Alieva, “Long-range plasmons in lossy metal films on photonic crystal surfaces,” Opt. Lett. 34(4), 479–481 (2009).
[Crossref] [PubMed]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[Crossref] [PubMed]

A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
[Crossref] [PubMed]

M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24(5), 1399–1404 (2009).
[Crossref] [PubMed]

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

2008 (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

2007 (2)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
[Crossref] [PubMed]

2006 (2)

J. Homola and M. Piliarik, “Surface plasmon resonance (SPR) sensors,” Springer Ser. Chem. Sens. Biosens. 4, 45–67 (2006).
[Crossref]

V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97(25), 253904 (2006).
[Crossref] [PubMed]

2005 (1)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic crystal,” Sens. Act. B 105(2), 360–364 (2005).
[Crossref]

2004 (1)

E. Fu, T. Chinowsky, J. Foley, J. Weinstein, and P. Yager, “Characterization of a wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 75(7), 2300 (2004).
[Crossref]

2003 (2)

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma-assisted coating processes,” Surf. Coat. Tech. 174–175, 1048–1052 (2003).
[Crossref]

T. M. Chinowski, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Act. B 91(1-3), 266–274 (2003).
[Crossref]

2002 (2)

A. N. Naimushin, S. D. Soelberg, D. K. Nguyen, L. Dunlap, D. Bartholomew, J. Elkind, J. Melendez, and C. E. Furlong, “Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor,” Biosens. Bioelectron. 17(6-7), 573–584 (2002).
[Crossref] [PubMed]

G. Nenninger, J. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002).
[Crossref]

2000 (2)

K. Johansen, R. Stalberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: Instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
[Crossref]

1999 (3)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1-2), 3–15 (1999).
[Crossref]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71(18), 3928–3934 (1999).
[Crossref]

1988 (1)

H. Raether, “Surface Plasmons on smooth and rough surfaces and on gratings,” Springer Tracts Mod. Phys. 111, 1–133 (1988).

1977 (1)

1970 (1)

Alieva, E. V.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

V. N. Konopsky and E. V. Alieva, “Observation of fine interference structures at total internal reflection of focused light beams,” Phys. Rev. A 86(6), 063807 (2012).
[Crossref]

V. N. Konopsky and E. V. Alieva, “Long-range plasmons in lossy metal films on photonic crystal surfaces,” Opt. Lett. 34(4), 479–481 (2009).
[Crossref] [PubMed]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97(25), 253904 (2006).
[Crossref] [PubMed]

Amra, C.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

Anopchenko, A.

Armenise, M. N.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Atmar, R.

T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
[Crossref] [PubMed]

Baker, P.

T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
[Crossref] [PubMed]

Barolo, C.

Bartholomew, D.

A. N. Naimushin, S. D. Soelberg, D. K. Nguyen, L. Dunlap, D. Bartholomew, J. Elkind, J. Melendez, and C. E. Furlong, “Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor,” Biosens. Bioelectron. 17(6-7), 573–584 (2002).
[Crossref] [PubMed]

Bartholomew, D. U.

T. M. Chinowski, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Act. B 91(1-3), 266–274 (2003).
[Crossref]

Bellon, S.

F. Remy-Martin, M. El Osta, G. Lucchi, R. Zeggari, T. Leblois, S. Bellon, P. Ducoroy, and W. Boireau, “Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma,” Anal. Bioanal. Chem. 404(2), 423–432 (2012).
[Crossref] [PubMed]

Beloglazov, A. A.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
[Crossref]

Bian, Y.

Boireau, W.

F. Remy-Martin, M. El Osta, G. Lucchi, R. Zeggari, T. Leblois, S. Bellon, P. Ducoroy, and W. Boireau, “Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma,” Anal. Bioanal. Chem. 404(2), 423–432 (2012).
[Crossref] [PubMed]

Brockman, J. M.

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71(18), 3928–3934 (1999).
[Crossref]

Campanella, C. E.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Campanella, C. M.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Chinowski, T. M.

T. M. Chinowski, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Act. B 91(1-3), 266–274 (2003).
[Crossref]

Chinowsky, T.

E. Fu, T. Chinowsky, J. Foley, J. Weinstein, and P. Yager, “Characterization of a wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 75(7), 2300 (2004).
[Crossref]

Chinowsky, T. M.

T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
[Crossref] [PubMed]

Chung, T.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel) 11(12), 1565–1588 (2011).
[Crossref] [PubMed]

Ciminelli, C.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Corn, R. M.

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71(18), 3928–3934 (1999).
[Crossref]

Danz, N.

R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
[Crossref]

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B 174, 292–298 (2012).
[Crossref]

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Dell’Olio, F.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Descrovi, E.

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B 174, 292–298 (2012).
[Crossref]

F. Michelotti and E. Descrovi, “Temperature stability of Bloch surface wave biosensors,” Appl. Phys. Lett. 99(23), 231107 (2011).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

Dietler, G.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Dominici, L.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B 174, 292–298 (2012).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

Du, G.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103, 04116 (2013).

Ducoroy, P.

F. Remy-Martin, M. El Osta, G. Lucchi, R. Zeggari, T. Leblois, S. Bellon, P. Ducoroy, and W. Boireau, “Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma,” Anal. Bioanal. Chem. 404(2), 423–432 (2012).
[Crossref] [PubMed]

Dumas, P.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

Dunlap, L.

A. N. Naimushin, S. D. Soelberg, D. K. Nguyen, L. Dunlap, D. Bartholomew, J. Elkind, J. Melendez, and C. E. Furlong, “Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor,” Biosens. Bioelectron. 17(6-7), 573–584 (2002).
[Crossref] [PubMed]

El Osta, M.

F. Remy-Martin, M. El Osta, G. Lucchi, R. Zeggari, T. Leblois, S. Bellon, P. Ducoroy, and W. Boireau, “Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma,” Anal. Bioanal. Chem. 404(2), 423–432 (2012).
[Crossref] [PubMed]

Elkind, J.

A. N. Naimushin, S. D. Soelberg, D. K. Nguyen, L. Dunlap, D. Bartholomew, J. Elkind, J. Melendez, and C. E. Furlong, “Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor,” Biosens. Bioelectron. 17(6-7), 573–584 (2002).
[Crossref] [PubMed]

Elkind, J. L.

T. M. Chinowski, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Act. B 91(1-3), 266–274 (2003).
[Crossref]

Fieramosca, A.

Figliozzi, G.

Foley, J.

E. Fu, T. Chinowsky, J. Foley, J. Weinstein, and P. Yager, “Characterization of a wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 75(7), 2300 (2004).
[Crossref]

Frutos, A. G.

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71(18), 3928–3934 (1999).
[Crossref]

Fu, E.

E. Fu, T. Chinowsky, J. Foley, J. Weinstein, and P. Yager, “Characterization of a wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 75(7), 2300 (2004).
[Crossref]

Furlong, C. E.

T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
[Crossref] [PubMed]

A. N. Naimushin, S. D. Soelberg, D. K. Nguyen, L. Dunlap, D. Bartholomew, J. Elkind, J. Melendez, and C. E. Furlong, “Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor,” Biosens. Bioelectron. 17(6-7), 573–584 (2002).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1-2), 3–15 (1999).
[Crossref]

Giorgis, F.

Grigorenko, A. N.

A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
[Crossref] [PubMed]

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
[Crossref]

Grow, M. S.

T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
[Crossref] [PubMed]

Han, S.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103, 04116 (2013).

Höfer, B.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Homola, J.

M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24(5), 1399–1404 (2009).
[Crossref] [PubMed]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[Crossref] [PubMed]

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

J. Homola and M. Piliarik, “Surface plasmon resonance (SPR) sensors,” Springer Ser. Chem. Sens. Biosens. 4, 45–67 (2006).
[Crossref]

G. Nenninger, J. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1-2), 3–15 (1999).
[Crossref]

Hong, C.-S.

Huebner, A.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
[Crossref]

Johansen, K.

K. Johansen, R. Stalberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: Instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Kabashin, A. V.

Kaiser, N.

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma-assisted coating processes,” Surf. Coat. Tech. 174–175, 1048–1052 (2003).
[Crossref]

Kaiser, R.

T. M. Chinowski, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Act. B 91(1-3), 266–274 (2003).
[Crossref]

Karakouz, T.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Kauffman, P.

T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
[Crossref] [PubMed]

Kick, A.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Klotzbach, U.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Kong, W.

Konopsky, V. N.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

V. N. Konopsky and E. V. Alieva, “Observation of fine interference structures at total internal reflection of focused light beams,” Phys. Rev. A 86(6), 063807 (2012).
[Crossref]

V. N. Konopsky and E. V. Alieva, “Long-range plasmons in lossy metal films on photonic crystal surfaces,” Opt. Lett. 34(4), 479–481 (2009).
[Crossref] [PubMed]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97(25), 253904 (2006).
[Crossref] [PubMed]

Kuhne, C.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
[Crossref]

Leblois, T.

F. Remy-Martin, M. El Osta, G. Lucchi, R. Zeggari, T. Leblois, S. Bellon, P. Ducoroy, and W. Boireau, “Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma,” Anal. Bioanal. Chem. 404(2), 423–432 (2012).
[Crossref] [PubMed]

Lee, B.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel) 11(12), 1565–1588 (2011).
[Crossref] [PubMed]

Lemarchand, F.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

Lereu, A. L.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

Li, Y.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103, 04116 (2013).

Liedberg, B.

K. Johansen, R. Stalberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: Instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Liu, J.

Liu, Y.

Lucchi, G.

F. Remy-Martin, M. El Osta, G. Lucchi, R. Zeggari, T. Leblois, S. Bellon, P. Ducoroy, and W. Boireau, “Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma,” Anal. Bioanal. Chem. 404(2), 423–432 (2012).
[Crossref] [PubMed]

Lundström, I.

K. Johansen, R. Stalberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: Instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Mactutis, A.

T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
[Crossref] [PubMed]

Magistris, C.

May, M. S.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

Melendez, J.

A. N. Naimushin, S. D. Soelberg, D. K. Nguyen, L. Dunlap, D. Bartholomew, J. Elkind, J. Melendez, and C. E. Furlong, “Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor,” Biosens. Bioelectron. 17(6-7), 573–584 (2002).
[Crossref] [PubMed]

Mertig, M.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Michelotti, F.

R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
[Crossref]

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B 174, 292–298 (2012).
[Crossref]

F. Michelotti and E. Descrovi, “Temperature stability of Bloch surface wave biosensors,” Appl. Phys. Lett. 99(23), 231107 (2011).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

Miller, M. B.

M. B. Miller and Y.-W. Tang, “Basic concepts of microarrays and potential applications in clinical microbiology,” Clin. Microbiol. Rev. 22(4), 611–633 (2009).
[Crossref] [PubMed]

Munzert, P.

R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
[Crossref]

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B 174, 292–298 (2012).
[Crossref]

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma-assisted coating processes,” Surf. Coat. Tech. 174–175, 1048–1052 (2003).
[Crossref]

Naimushin, A. N.

A. N. Naimushin, S. D. Soelberg, D. K. Nguyen, L. Dunlap, D. Bartholomew, J. Elkind, J. Melendez, and C. E. Furlong, “Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor,” Biosens. Bioelectron. 17(6-7), 573–584 (2002).
[Crossref] [PubMed]

Ndiaye, C.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

Nelson, B. P.

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71(18), 3928–3934 (1999).
[Crossref]

Nenninger, G.

G. Nenninger, J. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002).
[Crossref]

Nguyen, D. K.

A. N. Naimushin, S. D. Soelberg, D. K. Nguyen, L. Dunlap, D. Bartholomew, J. Elkind, J. Melendez, and C. E. Furlong, “Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor,” Biosens. Bioelectron. 17(6-7), 573–584 (2002).
[Crossref] [PubMed]

Nikitin, P. I.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
[Crossref]

Pang, Z.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103, 04116 (2013).

Párová, L.

M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24(5), 1399–1404 (2009).
[Crossref] [PubMed]

Patskovsky, S.

Piliarik, J.

G. Nenninger, J. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002).
[Crossref]

Piliarik, M.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[Crossref] [PubMed]

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24(5), 1399–1404 (2009).
[Crossref] [PubMed]

J. Homola and M. Piliarik, “Surface plasmon resonance (SPR) sensors,” Springer Ser. Chem. Sens. Biosens. 4, 45–67 (2006).
[Crossref]

Quinn, J. G.

T. M. Chinowski, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Act. B 91(1-3), 266–274 (2003).
[Crossref]

Raether, H.

H. Raether, “Surface Plasmons on smooth and rough surfaces and on gratings,” Springer Tracts Mod. Phys. 111, 1–133 (1988).

Remy-Martin, F.

F. Remy-Martin, M. El Osta, G. Lucchi, R. Zeggari, T. Leblois, S. Bellon, P. Ducoroy, and W. Boireau, “Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma,” Anal. Bioanal. Chem. 404(2), 423–432 (2012).
[Crossref] [PubMed]

Rizzo, R.

Robertson, W. M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic crystal,” Sens. Act. B 105(2), 360–364 (2005).
[Crossref]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

Roche, R.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

Roh, S.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel) 11(12), 1565–1588 (2011).
[Crossref] [PubMed]

Salzer, R.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
[Crossref]

Savchuk, A. I.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
[Crossref]

Savchuk, O. A.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
[Crossref]

Schmieder, S.

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B 174, 292–298 (2012).
[Crossref]

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma-assisted coating processes,” Surf. Coat. Tech. 174–175, 1048–1052 (2003).
[Crossref]

Sekatskii, S. K.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Shinn, M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic crystal,” Sens. Act. B 105(2), 360–364 (2005).
[Crossref]

Sinibaldi, A.

R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
[Crossref]

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
[Crossref] [PubMed]

A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B 174, 292–298 (2012).
[Crossref]

Soelberg, S. D.

T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
[Crossref] [PubMed]

A. N. Naimushin, S. D. Soelberg, D. K. Nguyen, L. Dunlap, D. Bartholomew, J. Elkind, J. Melendez, and C. E. Furlong, “Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor,” Biosens. Bioelectron. 17(6-7), 573–584 (2002).
[Crossref] [PubMed]

Song, S.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103, 04116 (2013).

Sonntag, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B 174, 292–298 (2012).
[Crossref]

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

Stalberg, R.

K. Johansen, R. Stalberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: Instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Steiner, G.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
[Crossref]

Summonte, C.

Swanson, N. R.

T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
[Crossref] [PubMed]

Tang, Y.-W.

M. B. Miller and Y.-W. Tang, “Basic concepts of microarrays and potential applications in clinical microbiology,” Clin. Microbiol. Rev. 22(4), 611–633 (2009).
[Crossref] [PubMed]

Tichý, I.

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

Ulrich, R.

Vala, M.

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

Valeiko, M. V.

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
[Crossref]

Vicario, C.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Wan, Y.

Weinstein, J.

E. Fu, T. Chinowsky, J. Foley, J. Weinstein, and P. Yager, “Characterization of a wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 75(7), 2300 (2004).
[Crossref]

Yager, P.

E. Fu, T. Chinowsky, J. Foley, J. Weinstein, and P. Yager, “Characterization of a wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 75(7), 2300 (2004).
[Crossref]

Yang, T.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103, 04116 (2013).

Yariv, A.

Yee, S. S.

T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
[Crossref] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1-2), 3–15 (1999).
[Crossref]

Yeh, P.

Zeggari, R.

F. Remy-Martin, M. El Osta, G. Lucchi, R. Zeggari, T. Leblois, S. Bellon, P. Ducoroy, and W. Boireau, “Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma,” Anal. Bioanal. Chem. 404(2), 423–432 (2012).
[Crossref] [PubMed]

Zerrad, M.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

Zhao, X.

Zheng, Z.

Anal. Bioanal. Chem. (1)

F. Remy-Martin, M. El Osta, G. Lucchi, R. Zeggari, T. Leblois, S. Bellon, P. Ducoroy, and W. Boireau, “Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma,” Anal. Bioanal. Chem. 404(2), 423–432 (2012).
[Crossref] [PubMed]

Anal. Chem. (2)

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71(18), 3928–3934 (1999).
[Crossref]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

F. Michelotti and E. Descrovi, “Temperature stability of Bloch surface wave biosensors,” Appl. Phys. Lett. 99(23), 231107 (2011).
[Crossref]

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103, 04116 (2013).

Biosens. Bioelectron. (4)

A. N. Naimushin, S. D. Soelberg, D. K. Nguyen, L. Dunlap, D. Bartholomew, J. Elkind, J. Melendez, and C. E. Furlong, “Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor,” Biosens. Bioelectron. 17(6-7), 573–584 (2002).
[Crossref] [PubMed]

T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, “Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection,” Biosens. Bioelectron. 22(9-10), 2268–2275 (2007).
[Crossref] [PubMed]

M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24(5), 1399–1404 (2009).
[Crossref] [PubMed]

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Clin. Microbiol. Rev. (1)

M. B. Miller and Y.-W. Tang, “Basic concepts of microarrays and potential applications in clinical microbiology,” Clin. Microbiol. Rev. 22(4), 611–633 (2009).
[Crossref] [PubMed]

Eng. Life Sci. (1)

N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips,” Eng. Life Sci. 11(6), 566–572 (2011).
[Crossref]

J. Opt. Soc. Am. (2)

Meas. Sci. Technol. (2)

G. Nenninger, J. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002).
[Crossref]

K. Johansen, R. Stalberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: Instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

V. N. Konopsky and E. V. Alieva, “Observation of fine interference structures at total internal reflection of focused light beams,” Phys. Rev. A 86(6), 063807 (2012).
[Crossref]

Phys. Rev. Lett. (1)

V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97(25), 253904 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

R. Rizzo, N. Danz, F. Michelotti, P. Munzert, and A. Sinibaldi, “Limit of detection comparison for surface wave biosensors,” Proc. SPIE 9141, 91410P (2014).
[Crossref]

Prog. Quantum Electron. (1)

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

E. Fu, T. Chinowsky, J. Foley, J. Weinstein, and P. Yager, “Characterization of a wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 75(7), 2300 (2004).
[Crossref]

Sens. Act. (1)

P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Act. 85(1-3), 189–193 (2000).
[Crossref]

Sens. Act. B (4)

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B 174, 292–298 (2012).
[Crossref]

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic crystal,” Sens. Act. B 105(2), 360–364 (2005).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1-2), 3–15 (1999).
[Crossref]

T. M. Chinowski, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Act. B 91(1-3), 266–274 (2003).
[Crossref]

Sensors (Basel) (2)

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel) 11(12), 1565–1588 (2011).
[Crossref] [PubMed]

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors (Basel) 13(3), 2566–2578 (2013).
[Crossref] [PubMed]

Springer Ser. Chem. Sens. Biosens. (1)

J. Homola and M. Piliarik, “Surface plasmon resonance (SPR) sensors,” Springer Ser. Chem. Sens. Biosens. 4, 45–67 (2006).
[Crossref]

Springer Tracts Mod. Phys. (1)

H. Raether, “Surface Plasmons on smooth and rough surfaces and on gratings,” Springer Tracts Mod. Phys. 111, 1–133 (1988).

Surf. Coat. Tech. (1)

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma-assisted coating processes,” Surf. Coat. Tech. 174–175, 1048–1052 (2003).
[Crossref]

Other (4)

D. Michaelis and I. O. F. Fraunhofer, personal communication (2014); manuscript in preparation.

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1991)

ZEMAX software distributed by Radiant Zemax, Redmond, USA ( www.radiantzemax.com )

W. H. Press, S. A. Teukolsky, W. T. Vetterlin, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Scheme of angular resonance detection by means of a Fourier imaging approach utilizing a lens with focal length f. The angular range A is discretized with N detector pixels that transform the angular width W of the resonance into a width w in terms of detector pixels. Inset A illustrates that discretization needs to resolve small signal shifts (curves 1 and 2) but is practically limited by the free measurement range (curve 3). Inset B illustrates the general stack that yields signal shifts due to organic layer adsorption as well as changes of analyte refractive index nA.
Fig. 2
Fig. 2 (A) Simplified model of resonance analysis using a quadratic polynomial to mimic the resonance sampled by a 12 bit dynamic range detector. (B) Discretizing a function by spatially extended pixels corresponds to a spatial integration of the distribution and yields discretized intensity values yi(xi) that differ from the ideal distribution f(xi) by an amount Δyi.
Fig. 3
Fig. 3 (A) Error of minimum position determination with respect to resonance depth for different widths of the resonance; the black line illustrates a 1/D behavior. (B) Minimum position error vs. resonance width for different depths of the resonance; the black line depicts the asymptotic behavior. The dots illustrate uncertainties obtained from fitting Lorentzian curves of width w with added numerical noise. All simulations assume a detector with 12 bit dynamic range; the solid and the dashed curves give the error without or with inclusion of the discretization error, respectively.
Fig. 4
Fig. 4 Calculation results obtained for sensitivity figure of merit FoM (A) as well as limit of detection LoD (B) vs. wavelength (650 nm < λ < 1’000 nm) for the case of 45 nm (dashed red), 50 nm (solid black) and 55 nm (dashdot blue) thick gold layers. LoD has been calculated assuming the value N = 1’000 pix.
Fig. 5
Fig. 5 Sensitivity with regard to thin film binding Slayer (top row) and with regard to bulk index changes Sbulk (bottom row) for the dielectric BSW systems subs | L | (HL)Np |water with different number of periods. Sbulk is based on an external refractive index change of 0.01 starting from nA = 1.33.
Fig. 6
Fig. 6 (A) Extrapolated pairs dL, = f(dH) from Fig. 5 with optimum sensitivity Slayer. The linear law dL = -dH + 452.5 nm correlates the two thicknesses is unequivocally. Along this line the sensitivity (B) varies by 0.6% only and has a mean value of 0.020 °/nm.
Fig. 7
Fig. 7 Resonance position (A) and angular range (B) for the BSW stack subs | L | (H|L)5 |water determined according to Fig. 1(A). The white dashed line indicates Slayer optimized stacks according to Fig. 6(A).
Fig. 8
Fig. 8 Resonance full width half maximum W (first row) and depth D (second row) for the BSW stacks subs | L | (HL)Np |water with Np = 4,5,6 (columns).
Fig. 9
Fig. 9 Simulated FoM (top row) and LoD (bottom row) assuming 1000 pix detector for different number of periods (columns).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

y ( x ) = a 2 x 2 + a 1 x + a 0 x min = a 1 2 a 2 Δ x min = | Δ a 1 2 a 2 | + | Δ a 2 a 2 x min |
y i = 1 Δ x x i Δ x / 2 x i + Δ x / 2 f ( x ) d x Δ y i = y i f ( x i ) = ( Δ x ) 2 24 f ( x i ) O ( f ( 4 ) ; ( Δ x ) 4 ) .
σ i 2 = 1 + 6 1 ' 000 y i + ( a 2 12 ) 2 .
Δ x min α w / D .
F o M = D S W .
L o D α w D S .
L o D α W D S A N = α 1 F o M w

Metrics