Abstract

In this work we experimentally demonstrate 1 Tbit/s (10 x 100 Gbit/s) unrepeatered transmission over 500.5 km using dual polarization quadrature phase shift keyed (DP-QPSK) format and real-time processing. Such ultra-long distance is enabled by the use of high-performance 100G DP-QPSK transponders (the required optical signal-to-noise ratio is 12 dB), ultra-low loss Corning SMF-28 ULL fiber (the average attenuation of the spools used in this experiment <0.160 dB/km), and optimization of remotely-pumped optical amplifiers. To the best of our knowledge this is the longest unrepeatered 100G-based 1 Tb/s WDM transmission distance reported to date.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-long unrepeatered transmission over 607 km at 100G and 632 km at 10G

Do-il Chang, Philippe Perrier, Herve Fevrier, Sergejs Makovejs, Christopher Towery, Xiaotie Jia, Li Deng, and Bozhong Li
Opt. Express 23(19) 25028-25033 (2015)

800Gb/s (8x128Gb/s) unrepeatered transmission over 515-km large-area ultra-low-loss fiber using 2nd-order Raman pumping

B. Zhu, P. I. Borel, T. Geisler, R. Jensen, L. Leng, X. Jiang, D. W. Peckham, R. L. Lingle, D. Vaidya, M. F. Yan, P. W. Wisk, and D. J. DiGiovanni
Opt. Express 24(22) 25291-25297 (2016)

Unrepeatered 256 Gb/s PM-16QAM transmission over up to 304 km with simple system configurations

John D. Downie, Jason Hurley, Ioannis Roudas, Dragan Pikula, and Jorge A. Garza-Alanis
Opt. Express 22(9) 10256-10261 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Downie, J. Hurley, J. Cartledge, S. Ten, S. Bickham, S. Mishra, X. Zhu, and A. Kobyakov, “40 × 112 Gb/s transmission over an unrepeatered 365 km effective area-managed span comprised of ultra-low loss optical fibre,” Proc. ECOC 2010, Paper We.7.C.5.
    [Crossref]
  2. H. Bissessur, P. Bousselet, D. Mongardien, G. Boissy, and J. Lestrade, “4 x 100Gb/s unrepeatered transmission over 462km using coherent PDM-QPSK format and real-time processing,” Proc. ECOC 2011, Paper Tu.3.B.3.
    [Crossref]
  3. P. Do-il Chang, P. Patki, S. Burtsev, and W. Pelouch, “8 x 120 Gb/s transmission over 80.8 dB / 480.4 km unrepeatered span,” Proc. OFC/NFOEC 2013, Paper JTh2A.42.
  4. V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
    [Crossref]
  5. T. J. Xia, D. L. Peterson, G. A. Wellbrock, P. Doil Chang, P. Perrier, H. Fevrier, S. Ten, C. Towery, and G. Mills, “557-km unrepeatered 100 G transmission with commercial raman DWDM system, enhanced ROPA, and cabled large Aeff ultra-low loss fiber in OSP environment,” Proc. OFC/NFOEC 2014, Paper Th5A.7.
  6. N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
    [Crossref]

2013 (2)

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Akopov, S.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Gainov, V.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Gurkin, N.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Lukinih, S.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Makovejs, S.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Nanii, O.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Novikov, A.

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Plaksin, S.

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Ten, S.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Treshchikov, V.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Ubaydullaev, R.

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Laser Phys. Lett. (1)

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Quantum Electron. (1)

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Other (4)

T. J. Xia, D. L. Peterson, G. A. Wellbrock, P. Doil Chang, P. Perrier, H. Fevrier, S. Ten, C. Towery, and G. Mills, “557-km unrepeatered 100 G transmission with commercial raman DWDM system, enhanced ROPA, and cabled large Aeff ultra-low loss fiber in OSP environment,” Proc. OFC/NFOEC 2014, Paper Th5A.7.

J. D. Downie, J. Hurley, J. Cartledge, S. Ten, S. Bickham, S. Mishra, X. Zhu, and A. Kobyakov, “40 × 112 Gb/s transmission over an unrepeatered 365 km effective area-managed span comprised of ultra-low loss optical fibre,” Proc. ECOC 2010, Paper We.7.C.5.
[Crossref]

H. Bissessur, P. Bousselet, D. Mongardien, G. Boissy, and J. Lestrade, “4 x 100Gb/s unrepeatered transmission over 462km using coherent PDM-QPSK format and real-time processing,” Proc. ECOC 2011, Paper Tu.3.B.3.
[Crossref]

P. Do-il Chang, P. Patki, S. Burtsev, and W. Pelouch, “8 x 120 Gb/s transmission over 80.8 dB / 480.4 km unrepeatered span,” Proc. OFC/NFOEC 2013, Paper JTh2A.42.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

a) ROPA1: Measured output power as a function of pump power in the saturation mode, input power is −2.5 dBm; b) ROPA2: Correlation between noise figure (solid red curve) and gain (dashed green curve) for an amplifier operating in a small signal gain. All measurements are performed for 193.5 THz channel.

Fig. 3
Fig. 3

OSNR dependence from the distance between ROPA2 and the receiver end.

Fig. 4
Fig. 4

Spectral dependence of gain and noise figure for ROPA2.

Fig. 5
Fig. 5

Long term pre-FEC BER measurements.

Fig. 6
Fig. 6

The spectrum of 10 received WDM channels measured after the pre-amplifier at the receiver side at the resolution bandwidth of 0.5 nm.

Fig. 7
Fig. 7

Evolution of (a) Power vs. distance; (b) OSNR vs. distance. Both at 1556.6 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ L = 10 log ( N C H ) α

Metrics