Abstract

In this work we experimentally demonstrate 1 Tbit/s (10 x 100 Gbit/s) unrepeatered transmission over 500.5 km using dual polarization quadrature phase shift keyed (DP-QPSK) format and real-time processing. Such ultra-long distance is enabled by the use of high-performance 100G DP-QPSK transponders (the required optical signal-to-noise ratio is 12 dB), ultra-low loss Corning SMF-28 ULL fiber (the average attenuation of the spools used in this experiment <0.160 dB/km), and optimization of remotely-pumped optical amplifiers. To the best of our knowledge this is the longest unrepeatered 100G-based 1 Tb/s WDM transmission distance reported to date.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Kerr nonlinearity mitigation in 5 × 28-GBd PDM 16-QAM signal transmission over a dispersion-uncompensated link with backward-pumped distributed Raman amplification

Isaac Sackey, Francesco Da Ros, Mahmoud Jazayerifar, Thomas Richter, Christian Meuer, Markus Nölle, Lutz Molle, Christophe Peucheret, Klaus Petermann, and Colja Schubert
Opt. Express 22(22) 27381-27391 (2014)

112 Gb/s PM-QPSK transmission up to 6000 km with 200 km amplifier spacing and a hybrid fiber span configuration

John D. Downie, Jason Hurley, John Cartledge, Scott Bickham, and Snigdharaj Mishra
Opt. Express 19(26) B96-B101 (2011)

Ultra-long unrepeatered transmission over 607 km at 100G and 632 km at 10G

Do-il Chang, Philippe Perrier, Herve Fevrier, Sergejs Makovejs, Christopher Towery, Xiaotie Jia, Li Deng, and Bozhong Li
Opt. Express 23(19) 25028-25033 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Downie, J. Hurley, J. Cartledge, S. Ten, S. Bickham, S. Mishra, X. Zhu, and A. Kobyakov, “40 × 112 Gb/s transmission over an unrepeatered 365 km effective area-managed span comprised of ultra-low loss optical fibre,” Proc. ECOC 2010, Paper We.7.C.5.
    [Crossref]
  2. H. Bissessur, P. Bousselet, D. Mongardien, G. Boissy, and J. Lestrade, “4 x 100Gb/s unrepeatered transmission over 462km using coherent PDM-QPSK format and real-time processing,” Proc. ECOC 2011, Paper Tu.3.B.3.
    [Crossref]
  3. P. Do-il Chang, P. Patki, S. Burtsev, and W. Pelouch, “8 x 120 Gb/s transmission over 80.8 dB / 480.4 km unrepeatered span,” Proc. OFC/NFOEC 2013, Paper JTh2A.42.
  4. V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
    [Crossref]
  5. T. J. Xia, D. L. Peterson, G. A. Wellbrock, P. Doil Chang, P. Perrier, H. Fevrier, S. Ten, C. Towery, and G. Mills, “557-km unrepeatered 100 G transmission with commercial raman DWDM system, enhanced ROPA, and cabled large Aeff ultra-low loss fiber in OSP environment,” Proc. OFC/NFOEC 2014, Paper Th5A.7.
  6. N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
    [Crossref]

2013 (2)

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Akopov, S.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Gainov, V.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Gurkin, N.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Lukinih, S.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Makovejs, S.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Nanii, O.

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Novikov, A.

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Plaksin, S.

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Ten, S.

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Treshchikov, V.

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Ubaydullaev, R.

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Laser Phys. Lett. (1)

V. Gainov, N. Gurkin, S. Lukinih, S. Akopov, S. Makovejs, S. Ten, O. Nanii, and V. Treshchikov, “Record 500 km unrepeatered 100 Gb s−1 transmission,” Laser Phys. Lett. 10(7), 075107 (2013).
[Crossref]

Quantum Electron. (1)

N. Gurkin, O. Nanii, A. Novikov, S. Plaksin, V. Treshchikov, and R. Ubaydullaev, “Nonlinear interference noise in 100-Gbit s-1 communication lines with the DP-QPSK modulation format,” Quantum Electron. 43(6), 550–553 (2013).
[Crossref]

Other (4)

T. J. Xia, D. L. Peterson, G. A. Wellbrock, P. Doil Chang, P. Perrier, H. Fevrier, S. Ten, C. Towery, and G. Mills, “557-km unrepeatered 100 G transmission with commercial raman DWDM system, enhanced ROPA, and cabled large Aeff ultra-low loss fiber in OSP environment,” Proc. OFC/NFOEC 2014, Paper Th5A.7.

J. D. Downie, J. Hurley, J. Cartledge, S. Ten, S. Bickham, S. Mishra, X. Zhu, and A. Kobyakov, “40 × 112 Gb/s transmission over an unrepeatered 365 km effective area-managed span comprised of ultra-low loss optical fibre,” Proc. ECOC 2010, Paper We.7.C.5.
[Crossref]

H. Bissessur, P. Bousselet, D. Mongardien, G. Boissy, and J. Lestrade, “4 x 100Gb/s unrepeatered transmission over 462km using coherent PDM-QPSK format and real-time processing,” Proc. ECOC 2011, Paper Tu.3.B.3.
[Crossref]

P. Do-il Chang, P. Patki, S. Burtsev, and W. Pelouch, “8 x 120 Gb/s transmission over 80.8 dB / 480.4 km unrepeatered span,” Proc. OFC/NFOEC 2013, Paper JTh2A.42.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

a) ROPA1: Measured output power as a function of pump power in the saturation mode, input power is −2.5 dBm; b) ROPA2: Correlation between noise figure (solid red curve) and gain (dashed green curve) for an amplifier operating in a small signal gain. All measurements are performed for 193.5 THz channel.

Fig. 3
Fig. 3

OSNR dependence from the distance between ROPA2 and the receiver end.

Fig. 4
Fig. 4

Spectral dependence of gain and noise figure for ROPA2.

Fig. 5
Fig. 5

Long term pre-FEC BER measurements.

Fig. 6
Fig. 6

The spectrum of 10 received WDM channels measured after the pre-amplifier at the receiver side at the resolution bandwidth of 0.5 nm.

Fig. 7
Fig. 7

Evolution of (a) Power vs. distance; (b) OSNR vs. distance. Both at 1556.6 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ L = 10 log ( N C H ) α

Metrics