Abstract

Optical coherence correlation spectroscopy (OCCS) allows studying kinetic processes at the single particle level using the backscattered light of nanoparticles. We extend the possibilities of this technique by increasing its signal-to-noise ratio by a factor of more than 25 and by generalizing the method to solutions containing multiple nanoparticle species. We applied these improvements by measuring protein adsorption and formation of a protein monolayer on superparamagnetic iron oxide nanoparticles under physiological conditions.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
The Ultraviolet Absorption Spectra of Protein Solutions1

R. Norman Jones and Hugh J. Creech
J. Opt. Soc. Am. 33(4) 209-218 (1943)

Single molecule correlation spectroscopy in continuous flow mixers with zero-mode waveguides

David Liao, Peter Galajda, Robert Riehn, Rob Ilic, Jason L. Puchalla, Howard G. Yu, Harold G. Craighead, and Robert H. Austin
Opt. Express 16(14) 10077-10090 (2008)

Mass-transport limitations in spot-based microarrays

Ming Zhao, Xuefeng Wang, and David Nolte
Biomed. Opt. Express 1(3) 983-997 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. Ghosh, G. Han, M. De, C. Kim, and V. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Delivery Rev. 60, 1307–1315 (2008).
    [Crossref]
  2. H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev. 41, 2849–2866 (2012).
    [Crossref]
  3. A. Gupta, R. Naregalkar, V. Vaidya, and M. Gupta, “Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications,” Nanomedicine 2, 23–39 (2007).
    [Crossref] [PubMed]
  4. Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 42, 1–15 (2009).
    [Crossref]
  5. R. Singh and H. Nalwa, “Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs,” J. Biomed. Nanotechnol. 7, 489–503 (2011).
    [Crossref] [PubMed]
  6. S. Broillet, A. Sato, S. Geissbuehler, C. Pache, A. Bouwens, T. Lasser, and M. Leutenegger, “Optical coherence correlation spectroscopy (occs),” Opt. Express 22, 782–802 (2014).
    [Crossref] [PubMed]
  7. J. Robinson, T. Takizawa, D. Vandré, and R. Burry, “Ultrasmall immunogold particles: Important probes for immunocytochemistry,” Microsc. Res. Tech. 42, 13–23 (1998).
    [Crossref] [PubMed]
  8. K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
    [Crossref] [PubMed]
  9. T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. Dawson, and S. Linse, “Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles,” Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007).
    [Crossref] [PubMed]
  10. U. Sakulkhu, M. Mahmoudi, L. Maurizi, J. Salaklang, and H. Hofmann, “Protein corona composition of super-paramagnetic iron oxide nanoparticles with various physico-chemical properties and coatings,” Sci. Rep. 4, 1–9 (2014).
    [Crossref]
  11. P. Aggarwal, J. Hall, C. McLeland, M. Dobrovolskaia, and S. McNeil, “Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy,” Adv. Drug Delivery Rev. 61, 428–437 (2009).
    [Crossref]
  12. C. Walkey and W. Chan, “Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment,” Chem. Soc. Rev. 41, 2780–2799 (2012).
    [Crossref]
  13. C. Rocker, M. Potzl, F. Zhang, W. Parak, and G. Nienhaus, “A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles,” Nat. Nanotechnol. 4, 577–580 (2009).
    [Crossref] [PubMed]
  14. S. Dominguez-Medina, S. McDonough, P. Swanglap, C. Landes, and S. Link, “In situ measurement of bovine serum albumin interaction with gold nanospheres,” Langmuir 28, 9131–9139 (2012).
    [Crossref] [PubMed]
  15. I. Kohli, S. Alam, B. Patel, and A. Mukhopadhyay, “Interaction and diffusion of gold nanoparticles in bovine serum albumin solutions,” Appl. Phys. Lett. 102, 203705 (2013).
    [Crossref]
  16. M. Mikhaylova, D. Kim, C. Berry, A. Zagorodni, M. Toprak, A. Curtis, and M. Muhammed, “Bsa immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles,” Chem. Mater. 16, 2344–2354 (2004).
    [Crossref]
  17. Z. Wang, T. Yue, Y. Yuan, R. Cai, C. Niu, and C. Guo, “Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles,” Int. J. Biol. Macromol. 58, 57–65 (2013).
    [Crossref] [PubMed]
  18. M. Villiger and T. Lasser, “Image formation and tomogram reconstruction in optical coherence microscopy,” J. Opt. Soc. Am. A 27, 2216–2228 (2010).
    [Crossref]
  19. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
    [Crossref] [PubMed]
  20. C. Pache, N. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in optical coherence microscopy,” Opt. Express 20, 21385–21399 (2012).
    [Crossref] [PubMed]
  21. M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35, 3489–3491 (2010).
    [Crossref] [PubMed]
  22. J. Izatt and M. Choma, Optical Coherence Tomography: Technology and Applications (Springer Verlag, Berlin, 2008).
  23. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
    [Crossref] [PubMed]
  24. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
    [Crossref]
  25. T. Wohland, R. Rigler, and H. Vogel, “The standard deviation in fluorescence correlation spectroscopy,” Biophys. J. 80, 2987–2999 (2001).
    [Crossref] [PubMed]
  26. N. L. Thompson, Fluorescence correlation spectroscopy. In: Topics in Fluorescence Spectroscopy, vol. 1 (Plenum Press, 1991).
  27. U. Meseth, T. Wohland, R. Rigler, and H. Vogel, “Resolution of fluorescence correlation measurements,” Biophys. J. 76, 1619–1631 (1999).
    [Crossref] [PubMed]
  28. B. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics. Chapter 5: Model Systems of Spherical Molecules (John Wiley and Sons, 1976).
  29. M. Leutenegger, R. Rao, R. Leitgeb, and T. Lasser, “Fast focus field calculations,” Opt. Express 14, 11277–11291 (2006).
    [Crossref] [PubMed]
  30. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [Crossref] [PubMed]
  31. M. Chastellain, A. Petri, and H. Hofmann, “Particle size investigations of a multistep synthesis of pva coated superparamagnetic nanoparticles,” J. Colloid Interface Sci. 278, 353–360 (2004).
    [Crossref] [PubMed]
  32. L. Maurizi, U. Sakulkhu, L. Crowe, V. Dao, N. Leclaire, J.-P. Vallee, and H. Hofmann, “Syntheses of cross-linked polymeric superparamagnetic beads with tunable properties,” RSC Adv. 4, 11142–11146 (2014).
    [Crossref]
  33. M. Ferrer, R. Duchowicz, B. Carrasco, J. De La Torre, and A. Acuna, “The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study,” Biophys. J. 80, 2422–2430 (2001).
    [Crossref] [PubMed]
  34. H. Kenneth Walker, W. Dallas Hall, and J. Willis Hurst, Clinical Methods, 3rd edition; The History, Physical, and Laboratory Examinations; Chapter 101: Serum Albumin and Globulin (Butterworths, 1990).

2014 (3)

S. Broillet, A. Sato, S. Geissbuehler, C. Pache, A. Bouwens, T. Lasser, and M. Leutenegger, “Optical coherence correlation spectroscopy (occs),” Opt. Express 22, 782–802 (2014).
[Crossref] [PubMed]

U. Sakulkhu, M. Mahmoudi, L. Maurizi, J. Salaklang, and H. Hofmann, “Protein corona composition of super-paramagnetic iron oxide nanoparticles with various physico-chemical properties and coatings,” Sci. Rep. 4, 1–9 (2014).
[Crossref]

L. Maurizi, U. Sakulkhu, L. Crowe, V. Dao, N. Leclaire, J.-P. Vallee, and H. Hofmann, “Syntheses of cross-linked polymeric superparamagnetic beads with tunable properties,” RSC Adv. 4, 11142–11146 (2014).
[Crossref]

2013 (2)

Z. Wang, T. Yue, Y. Yuan, R. Cai, C. Niu, and C. Guo, “Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles,” Int. J. Biol. Macromol. 58, 57–65 (2013).
[Crossref] [PubMed]

I. Kohli, S. Alam, B. Patel, and A. Mukhopadhyay, “Interaction and diffusion of gold nanoparticles in bovine serum albumin solutions,” Appl. Phys. Lett. 102, 203705 (2013).
[Crossref]

2012 (5)

S. Dominguez-Medina, S. McDonough, P. Swanglap, C. Landes, and S. Link, “In situ measurement of bovine serum albumin interaction with gold nanospheres,” Langmuir 28, 9131–9139 (2012).
[Crossref] [PubMed]

C. Walkey and W. Chan, “Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment,” Chem. Soc. Rev. 41, 2780–2799 (2012).
[Crossref]

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev. 41, 2849–2866 (2012).
[Crossref]

C. Pache, N. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in optical coherence microscopy,” Opt. Express 20, 21385–21399 (2012).
[Crossref] [PubMed]

2011 (1)

R. Singh and H. Nalwa, “Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs,” J. Biomed. Nanotechnol. 7, 489–503 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (3)

C. Rocker, M. Potzl, F. Zhang, W. Parak, and G. Nienhaus, “A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles,” Nat. Nanotechnol. 4, 577–580 (2009).
[Crossref] [PubMed]

P. Aggarwal, J. Hall, C. McLeland, M. Dobrovolskaia, and S. McNeil, “Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy,” Adv. Drug Delivery Rev. 61, 428–437 (2009).
[Crossref]

Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 42, 1–15 (2009).
[Crossref]

2008 (1)

P. Ghosh, G. Han, M. De, C. Kim, and V. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Delivery Rev. 60, 1307–1315 (2008).
[Crossref]

2007 (2)

A. Gupta, R. Naregalkar, V. Vaidya, and M. Gupta, “Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications,” Nanomedicine 2, 23–39 (2007).
[Crossref] [PubMed]

T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. Dawson, and S. Linse, “Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles,” Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007).
[Crossref] [PubMed]

2006 (2)

2004 (3)

M. Chastellain, A. Petri, and H. Hofmann, “Particle size investigations of a multistep synthesis of pva coated superparamagnetic nanoparticles,” J. Colloid Interface Sci. 278, 353–360 (2004).
[Crossref] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref] [PubMed]

M. Mikhaylova, D. Kim, C. Berry, A. Zagorodni, M. Toprak, A. Curtis, and M. Muhammed, “Bsa immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles,” Chem. Mater. 16, 2344–2354 (2004).
[Crossref]

2003 (1)

2001 (2)

M. Ferrer, R. Duchowicz, B. Carrasco, J. De La Torre, and A. Acuna, “The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study,” Biophys. J. 80, 2422–2430 (2001).
[Crossref] [PubMed]

T. Wohland, R. Rigler, and H. Vogel, “The standard deviation in fluorescence correlation spectroscopy,” Biophys. J. 80, 2987–2999 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

U. Meseth, T. Wohland, R. Rigler, and H. Vogel, “Resolution of fluorescence correlation measurements,” Biophys. J. 76, 1619–1631 (1999).
[Crossref] [PubMed]

1998 (1)

J. Robinson, T. Takizawa, D. Vandré, and R. Burry, “Ultrasmall immunogold particles: Important probes for immunocytochemistry,” Microsc. Res. Tech. 42, 13–23 (1998).
[Crossref] [PubMed]

Acuna, A.

M. Ferrer, R. Duchowicz, B. Carrasco, J. De La Torre, and A. Acuna, “The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study,” Biophys. J. 80, 2422–2430 (2001).
[Crossref] [PubMed]

Aggarwal, P.

P. Aggarwal, J. Hall, C. McLeland, M. Dobrovolskaia, and S. McNeil, “Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy,” Adv. Drug Delivery Rev. 61, 428–437 (2009).
[Crossref]

Alam, S.

I. Kohli, S. Alam, B. Patel, and A. Mukhopadhyay, “Interaction and diffusion of gold nanoparticles in bovine serum albumin solutions,” Appl. Phys. Lett. 102, 203705 (2013).
[Crossref]

Bachmann, A. H.

Belabas, N.

Berclaz, C.

Berggard, T.

T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. Dawson, and S. Linse, “Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles,” Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007).
[Crossref] [PubMed]

Berne, B.

B. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics. Chapter 5: Model Systems of Spherical Molecules (John Wiley and Sons, 1976).

Berry, C.

M. Mikhaylova, D. Kim, C. Berry, A. Zagorodni, M. Toprak, A. Curtis, and M. Muhammed, “Bsa immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles,” Chem. Mater. 16, 2344–2354 (2004).
[Crossref]

Bocchio, N.

Bouwens, A.

Broillet, S.

Burry, R.

J. Robinson, T. Takizawa, D. Vandré, and R. Burry, “Ultrasmall immunogold particles: Important probes for immunocytochemistry,” Microsc. Res. Tech. 42, 13–23 (1998).
[Crossref] [PubMed]

Cai, R.

Z. Wang, T. Yue, Y. Yuan, R. Cai, C. Niu, and C. Guo, “Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles,” Int. J. Biol. Macromol. 58, 57–65 (2013).
[Crossref] [PubMed]

Carrasco, B.

M. Ferrer, R. Duchowicz, B. Carrasco, J. De La Torre, and A. Acuna, “The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study,” Biophys. J. 80, 2422–2430 (2001).
[Crossref] [PubMed]

Cedervall, T.

T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. Dawson, and S. Linse, “Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles,” Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007).
[Crossref] [PubMed]

Chan, W.

C. Walkey and W. Chan, “Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment,” Chem. Soc. Rev. 41, 2780–2799 (2012).
[Crossref]

Chastellain, M.

M. Chastellain, A. Petri, and H. Hofmann, “Particle size investigations of a multistep synthesis of pva coated superparamagnetic nanoparticles,” J. Colloid Interface Sci. 278, 353–360 (2004).
[Crossref] [PubMed]

Choma, M.

J. Izatt and M. Choma, Optical Coherence Tomography: Technology and Applications (Springer Verlag, Berlin, 2008).

Crowe, L.

L. Maurizi, U. Sakulkhu, L. Crowe, V. Dao, N. Leclaire, J.-P. Vallee, and H. Hofmann, “Syntheses of cross-linked polymeric superparamagnetic beads with tunable properties,” RSC Adv. 4, 11142–11146 (2014).
[Crossref]

Curtis, A.

M. Mikhaylova, D. Kim, C. Berry, A. Zagorodni, M. Toprak, A. Curtis, and M. Muhammed, “Bsa immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles,” Chem. Mater. 16, 2344–2354 (2004).
[Crossref]

Dao, V.

L. Maurizi, U. Sakulkhu, L. Crowe, V. Dao, N. Leclaire, J.-P. Vallee, and H. Hofmann, “Syntheses of cross-linked polymeric superparamagnetic beads with tunable properties,” RSC Adv. 4, 11142–11146 (2014).
[Crossref]

Dawson, K.

T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. Dawson, and S. Linse, “Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles,” Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007).
[Crossref] [PubMed]

De, M.

P. Ghosh, G. Han, M. De, C. Kim, and V. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Delivery Rev. 60, 1307–1315 (2008).
[Crossref]

De La Torre, J.

M. Ferrer, R. Duchowicz, B. Carrasco, J. De La Torre, and A. Acuna, “The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study,” Biophys. J. 80, 2422–2430 (2001).
[Crossref] [PubMed]

Dobrovolskaia, M.

P. Aggarwal, J. Hall, C. McLeland, M. Dobrovolskaia, and S. McNeil, “Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy,” Adv. Drug Delivery Rev. 61, 428–437 (2009).
[Crossref]

Dobson, J.

Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 42, 1–15 (2009).
[Crossref]

Dominguez-Medina, S.

S. Dominguez-Medina, S. McDonough, P. Swanglap, C. Landes, and S. Link, “In situ measurement of bovine serum albumin interaction with gold nanospheres,” Langmuir 28, 9131–9139 (2012).
[Crossref] [PubMed]

Dorrer, C.

Duchowicz, R.

M. Ferrer, R. Duchowicz, B. Carrasco, J. De La Torre, and A. Acuna, “The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study,” Biophys. J. 80, 2422–2430 (2001).
[Crossref] [PubMed]

Duker, J.

Fercher, A.

Ferrer, M.

M. Ferrer, R. Duchowicz, B. Carrasco, J. De La Torre, and A. Acuna, “The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study,” Biophys. J. 80, 2422–2430 (2001).
[Crossref] [PubMed]

Fujimoto, J.

Gan, Y.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

Geissbuehler, S.

Ghosh, P.

P. Ghosh, G. Han, M. De, C. Kim, and V. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Delivery Rev. 60, 1307–1315 (2008).
[Crossref]

Gibson, M.

Goulley, J.

Guo, C.

Z. Wang, T. Yue, Y. Yuan, R. Cai, C. Niu, and C. Guo, “Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles,” Int. J. Biol. Macromol. 58, 57–65 (2013).
[Crossref] [PubMed]

Gupta, A.

A. Gupta, R. Naregalkar, V. Vaidya, and M. Gupta, “Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications,” Nanomedicine 2, 23–39 (2007).
[Crossref] [PubMed]

Gupta, M.

A. Gupta, R. Naregalkar, V. Vaidya, and M. Gupta, “Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications,” Nanomedicine 2, 23–39 (2007).
[Crossref] [PubMed]

Hall, J.

P. Aggarwal, J. Hall, C. McLeland, M. Dobrovolskaia, and S. McNeil, “Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy,” Adv. Drug Delivery Rev. 61, 428–437 (2009).
[Crossref]

Hall, W. Dallas

H. Kenneth Walker, W. Dallas Hall, and J. Willis Hurst, Clinical Methods, 3rd edition; The History, Physical, and Laboratory Examinations; Chapter 101: Serum Albumin and Globulin (Butterworths, 1990).

Han, G.

P. Ghosh, G. Han, M. De, C. Kim, and V. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Delivery Rev. 60, 1307–1315 (2008).
[Crossref]

He, S.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

Hitzenberger, C.

Hofmann, H.

L. Maurizi, U. Sakulkhu, L. Crowe, V. Dao, N. Leclaire, J.-P. Vallee, and H. Hofmann, “Syntheses of cross-linked polymeric superparamagnetic beads with tunable properties,” RSC Adv. 4, 11142–11146 (2014).
[Crossref]

U. Sakulkhu, M. Mahmoudi, L. Maurizi, J. Salaklang, and H. Hofmann, “Protein corona composition of super-paramagnetic iron oxide nanoparticles with various physico-chemical properties and coatings,” Sci. Rep. 4, 1–9 (2014).
[Crossref]

M. Chastellain, A. Petri, and H. Hofmann, “Particle size investigations of a multistep synthesis of pva coated superparamagnetic nanoparticles,” J. Colloid Interface Sci. 278, 353–360 (2004).
[Crossref] [PubMed]

Huang, K.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

Huo, Q.

H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev. 41, 2849–2866 (2012).
[Crossref]

Huo, S.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

Hurst, J. Willis

H. Kenneth Walker, W. Dallas Hall, and J. Willis Hurst, Clinical Methods, 3rd edition; The History, Physical, and Laboratory Examinations; Chapter 101: Serum Albumin and Globulin (Butterworths, 1990).

Izatt, J.

J. Izatt and M. Choma, Optical Coherence Tomography: Technology and Applications (Springer Verlag, Berlin, 2008).

Jans, H.

H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev. 41, 2849–2866 (2012).
[Crossref]

Jin, S.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

Joffre, M.

Jones, S.

Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 42, 1–15 (2009).
[Crossref]

Kim, C.

P. Ghosh, G. Han, M. De, C. Kim, and V. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Delivery Rev. 60, 1307–1315 (2008).
[Crossref]

Kim, D.

M. Mikhaylova, D. Kim, C. Berry, A. Zagorodni, M. Toprak, A. Curtis, and M. Muhammed, “Bsa immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles,” Chem. Mater. 16, 2344–2354 (2004).
[Crossref]

Ko, T.

Kohli, I.

I. Kohli, S. Alam, B. Patel, and A. Mukhopadhyay, “Interaction and diffusion of gold nanoparticles in bovine serum albumin solutions,” Appl. Phys. Lett. 102, 203705 (2013).
[Crossref]

Kowalczyk, A.

Kumar, A.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

Landes, C.

S. Dominguez-Medina, S. McDonough, P. Swanglap, C. Landes, and S. Link, “In situ measurement of bovine serum albumin interaction with gold nanospheres,” Langmuir 28, 9131–9139 (2012).
[Crossref] [PubMed]

Lasser, T.

Leclaire, N.

L. Maurizi, U. Sakulkhu, L. Crowe, V. Dao, N. Leclaire, J.-P. Vallee, and H. Hofmann, “Syntheses of cross-linked polymeric superparamagnetic beads with tunable properties,” RSC Adv. 4, 11142–11146 (2014).
[Crossref]

Leitgeb, R.

Leitgeb, R. A.

Leutenegger, M.

Liang, X.-J.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

Likforman, J.-P.

Lindman, S.

T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. Dawson, and S. Linse, “Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles,” Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007).
[Crossref] [PubMed]

Link, S.

S. Dominguez-Medina, S. McDonough, P. Swanglap, C. Landes, and S. Link, “In situ measurement of bovine serum albumin interaction with gold nanospheres,” Langmuir 28, 9131–9139 (2012).
[Crossref] [PubMed]

Linse, S.

T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. Dawson, and S. Linse, “Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles,” Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007).
[Crossref] [PubMed]

Liu, J.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

Lynch, I.

T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. Dawson, and S. Linse, “Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles,” Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007).
[Crossref] [PubMed]

Ma, H.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

Mahmoudi, M.

U. Sakulkhu, M. Mahmoudi, L. Maurizi, J. Salaklang, and H. Hofmann, “Protein corona composition of super-paramagnetic iron oxide nanoparticles with various physico-chemical properties and coatings,” Sci. Rep. 4, 1–9 (2014).
[Crossref]

Maurizi, L.

U. Sakulkhu, M. Mahmoudi, L. Maurizi, J. Salaklang, and H. Hofmann, “Protein corona composition of super-paramagnetic iron oxide nanoparticles with various physico-chemical properties and coatings,” Sci. Rep. 4, 1–9 (2014).
[Crossref]

L. Maurizi, U. Sakulkhu, L. Crowe, V. Dao, N. Leclaire, J.-P. Vallee, and H. Hofmann, “Syntheses of cross-linked polymeric superparamagnetic beads with tunable properties,” RSC Adv. 4, 11142–11146 (2014).
[Crossref]

McDonough, S.

S. Dominguez-Medina, S. McDonough, P. Swanglap, C. Landes, and S. Link, “In situ measurement of bovine serum albumin interaction with gold nanospheres,” Langmuir 28, 9131–9139 (2012).
[Crossref] [PubMed]

McLeland, C.

P. Aggarwal, J. Hall, C. McLeland, M. Dobrovolskaia, and S. McNeil, “Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy,” Adv. Drug Delivery Rev. 61, 428–437 (2009).
[Crossref]

McNeil, S.

P. Aggarwal, J. Hall, C. McLeland, M. Dobrovolskaia, and S. McNeil, “Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy,” Adv. Drug Delivery Rev. 61, 428–437 (2009).
[Crossref]

Meseth, U.

U. Meseth, T. Wohland, R. Rigler, and H. Vogel, “Resolution of fluorescence correlation measurements,” Biophys. J. 76, 1619–1631 (1999).
[Crossref] [PubMed]

Mikhaylova, M.

M. Mikhaylova, D. Kim, C. Berry, A. Zagorodni, M. Toprak, A. Curtis, and M. Muhammed, “Bsa immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles,” Chem. Mater. 16, 2344–2354 (2004).
[Crossref]

Muhammed, M.

M. Mikhaylova, D. Kim, C. Berry, A. Zagorodni, M. Toprak, A. Curtis, and M. Muhammed, “Bsa immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles,” Chem. Mater. 16, 2344–2354 (2004).
[Crossref]

Mukhopadhyay, A.

I. Kohli, S. Alam, B. Patel, and A. Mukhopadhyay, “Interaction and diffusion of gold nanoparticles in bovine serum albumin solutions,” Appl. Phys. Lett. 102, 203705 (2013).
[Crossref]

Nalwa, H.

R. Singh and H. Nalwa, “Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs,” J. Biomed. Nanotechnol. 7, 489–503 (2011).
[Crossref] [PubMed]

Naregalkar, R.

A. Gupta, R. Naregalkar, V. Vaidya, and M. Gupta, “Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications,” Nanomedicine 2, 23–39 (2007).
[Crossref] [PubMed]

Nienhaus, G.

C. Rocker, M. Potzl, F. Zhang, W. Parak, and G. Nienhaus, “A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles,” Nat. Nanotechnol. 4, 577–580 (2009).
[Crossref] [PubMed]

Nilsson, H.

T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. Dawson, and S. Linse, “Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles,” Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007).
[Crossref] [PubMed]

Niu, C.

Z. Wang, T. Yue, Y. Yuan, R. Cai, C. Niu, and C. Guo, “Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles,” Int. J. Biol. Macromol. 58, 57–65 (2013).
[Crossref] [PubMed]

Pache, C.

Pankhurst, Q.

Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 42, 1–15 (2009).
[Crossref]

Parak, W.

C. Rocker, M. Potzl, F. Zhang, W. Parak, and G. Nienhaus, “A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles,” Nat. Nanotechnol. 4, 577–580 (2009).
[Crossref] [PubMed]

Patel, B.

I. Kohli, S. Alam, B. Patel, and A. Mukhopadhyay, “Interaction and diffusion of gold nanoparticles in bovine serum albumin solutions,” Appl. Phys. Lett. 102, 203705 (2013).
[Crossref]

Pecora, R.

B. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics. Chapter 5: Model Systems of Spherical Molecules (John Wiley and Sons, 1976).

Petri, A.

M. Chastellain, A. Petri, and H. Hofmann, “Particle size investigations of a multistep synthesis of pva coated superparamagnetic nanoparticles,” J. Colloid Interface Sci. 278, 353–360 (2004).
[Crossref] [PubMed]

Potzl, M.

C. Rocker, M. Potzl, F. Zhang, W. Parak, and G. Nienhaus, “A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles,” Nat. Nanotechnol. 4, 577–580 (2009).
[Crossref] [PubMed]

Rao, R.

Rigler, R.

T. Wohland, R. Rigler, and H. Vogel, “The standard deviation in fluorescence correlation spectroscopy,” Biophys. J. 80, 2987–2999 (2001).
[Crossref] [PubMed]

U. Meseth, T. Wohland, R. Rigler, and H. Vogel, “Resolution of fluorescence correlation measurements,” Biophys. J. 76, 1619–1631 (1999).
[Crossref] [PubMed]

Robinson, J.

J. Robinson, T. Takizawa, D. Vandré, and R. Burry, “Ultrasmall immunogold particles: Important probes for immunocytochemistry,” Microsc. Res. Tech. 42, 13–23 (1998).
[Crossref] [PubMed]

Rocker, C.

C. Rocker, M. Potzl, F. Zhang, W. Parak, and G. Nienhaus, “A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles,” Nat. Nanotechnol. 4, 577–580 (2009).
[Crossref] [PubMed]

Rotello, V.

P. Ghosh, G. Han, M. De, C. Kim, and V. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Delivery Rev. 60, 1307–1315 (2008).
[Crossref]

Sakulkhu, U.

U. Sakulkhu, M. Mahmoudi, L. Maurizi, J. Salaklang, and H. Hofmann, “Protein corona composition of super-paramagnetic iron oxide nanoparticles with various physico-chemical properties and coatings,” Sci. Rep. 4, 1–9 (2014).
[Crossref]

L. Maurizi, U. Sakulkhu, L. Crowe, V. Dao, N. Leclaire, J.-P. Vallee, and H. Hofmann, “Syntheses of cross-linked polymeric superparamagnetic beads with tunable properties,” RSC Adv. 4, 11142–11146 (2014).
[Crossref]

Salaklang, J.

U. Sakulkhu, M. Mahmoudi, L. Maurizi, J. Salaklang, and H. Hofmann, “Protein corona composition of super-paramagnetic iron oxide nanoparticles with various physico-chemical properties and coatings,” Sci. Rep. 4, 1–9 (2014).
[Crossref]

Santschi, C.

Sato, A.

Singh, R.

R. Singh and H. Nalwa, “Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs,” J. Biomed. Nanotechnol. 7, 489–503 (2011).
[Crossref] [PubMed]

Srinivasan, V.

Steinmann, L.

Swanglap, P.

S. Dominguez-Medina, S. McDonough, P. Swanglap, C. Landes, and S. Link, “In situ measurement of bovine serum albumin interaction with gold nanospheres,” Langmuir 28, 9131–9139 (2012).
[Crossref] [PubMed]

Takizawa, T.

J. Robinson, T. Takizawa, D. Vandré, and R. Burry, “Ultrasmall immunogold particles: Important probes for immunocytochemistry,” Microsc. Res. Tech. 42, 13–23 (1998).
[Crossref] [PubMed]

Thanh, N.

Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 42, 1–15 (2009).
[Crossref]

Thompson, N. L.

N. L. Thompson, Fluorescence correlation spectroscopy. In: Topics in Fluorescence Spectroscopy, vol. 1 (Plenum Press, 1991).

Thulin, E.

T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. Dawson, and S. Linse, “Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles,” Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007).
[Crossref] [PubMed]

Toprak, M.

M. Mikhaylova, D. Kim, C. Berry, A. Zagorodni, M. Toprak, A. Curtis, and M. Muhammed, “Bsa immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles,” Chem. Mater. 16, 2344–2354 (2004).
[Crossref]

Vaidya, V.

A. Gupta, R. Naregalkar, V. Vaidya, and M. Gupta, “Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications,” Nanomedicine 2, 23–39 (2007).
[Crossref] [PubMed]

Vallee, J.-P.

L. Maurizi, U. Sakulkhu, L. Crowe, V. Dao, N. Leclaire, J.-P. Vallee, and H. Hofmann, “Syntheses of cross-linked polymeric superparamagnetic beads with tunable properties,” RSC Adv. 4, 11142–11146 (2014).
[Crossref]

Vandré, D.

J. Robinson, T. Takizawa, D. Vandré, and R. Burry, “Ultrasmall immunogold particles: Important probes for immunocytochemistry,” Microsc. Res. Tech. 42, 13–23 (1998).
[Crossref] [PubMed]

Villiger, M.

Vogel, H.

T. Wohland, R. Rigler, and H. Vogel, “The standard deviation in fluorescence correlation spectroscopy,” Biophys. J. 80, 2987–2999 (2001).
[Crossref] [PubMed]

U. Meseth, T. Wohland, R. Rigler, and H. Vogel, “Resolution of fluorescence correlation measurements,” Biophys. J. 76, 1619–1631 (1999).
[Crossref] [PubMed]

Walker, H. Kenneth

H. Kenneth Walker, W. Dallas Hall, and J. Willis Hurst, Clinical Methods, 3rd edition; The History, Physical, and Laboratory Examinations; Chapter 101: Serum Albumin and Globulin (Butterworths, 1990).

Walkey, C.

C. Walkey and W. Chan, “Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment,” Chem. Soc. Rev. 41, 2780–2799 (2012).
[Crossref]

Wang, P.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, T. Yue, Y. Yuan, R. Cai, C. Niu, and C. Guo, “Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles,” Int. J. Biol. Macromol. 58, 57–65 (2013).
[Crossref] [PubMed]

Wei, T.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

Wohland, T.

T. Wohland, R. Rigler, and H. Vogel, “The standard deviation in fluorescence correlation spectroscopy,” Biophys. J. 80, 2987–2999 (2001).
[Crossref] [PubMed]

U. Meseth, T. Wohland, R. Rigler, and H. Vogel, “Resolution of fluorescence correlation measurements,” Biophys. J. 76, 1619–1631 (1999).
[Crossref] [PubMed]

Wojtkowski, M.

Yuan, Y.

Z. Wang, T. Yue, Y. Yuan, R. Cai, C. Niu, and C. Guo, “Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles,” Int. J. Biol. Macromol. 58, 57–65 (2013).
[Crossref] [PubMed]

Yue, T.

Z. Wang, T. Yue, Y. Yuan, R. Cai, C. Niu, and C. Guo, “Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles,” Int. J. Biol. Macromol. 58, 57–65 (2013).
[Crossref] [PubMed]

Zagorodni, A.

M. Mikhaylova, D. Kim, C. Berry, A. Zagorodni, M. Toprak, A. Curtis, and M. Muhammed, “Bsa immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles,” Chem. Mater. 16, 2344–2354 (2004).
[Crossref]

Zhang, F.

C. Rocker, M. Potzl, F. Zhang, W. Parak, and G. Nienhaus, “A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles,” Nat. Nanotechnol. 4, 577–580 (2009).
[Crossref] [PubMed]

Zhang, X.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

ACS Nano (1)

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. Wang, S. He, X. Zhang, and X.-J. Liang, “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).
[Crossref] [PubMed]

Adv. Drug Delivery Rev. (2)

P. Ghosh, G. Han, M. De, C. Kim, and V. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Delivery Rev. 60, 1307–1315 (2008).
[Crossref]

P. Aggarwal, J. Hall, C. McLeland, M. Dobrovolskaia, and S. McNeil, “Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy,” Adv. Drug Delivery Rev. 61, 428–437 (2009).
[Crossref]

Appl. Phys. Lett. (1)

I. Kohli, S. Alam, B. Patel, and A. Mukhopadhyay, “Interaction and diffusion of gold nanoparticles in bovine serum albumin solutions,” Appl. Phys. Lett. 102, 203705 (2013).
[Crossref]

Biophys. J. (3)

T. Wohland, R. Rigler, and H. Vogel, “The standard deviation in fluorescence correlation spectroscopy,” Biophys. J. 80, 2987–2999 (2001).
[Crossref] [PubMed]

U. Meseth, T. Wohland, R. Rigler, and H. Vogel, “Resolution of fluorescence correlation measurements,” Biophys. J. 76, 1619–1631 (1999).
[Crossref] [PubMed]

M. Ferrer, R. Duchowicz, B. Carrasco, J. De La Torre, and A. Acuna, “The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study,” Biophys. J. 80, 2422–2430 (2001).
[Crossref] [PubMed]

Chem. Mater. (1)

M. Mikhaylova, D. Kim, C. Berry, A. Zagorodni, M. Toprak, A. Curtis, and M. Muhammed, “Bsa immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles,” Chem. Mater. 16, 2344–2354 (2004).
[Crossref]

Chem. Soc. Rev. (2)

C. Walkey and W. Chan, “Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment,” Chem. Soc. Rev. 41, 2780–2799 (2012).
[Crossref]

H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev. 41, 2849–2866 (2012).
[Crossref]

Int. J. Biol. Macromol. (1)

Z. Wang, T. Yue, Y. Yuan, R. Cai, C. Niu, and C. Guo, “Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles,” Int. J. Biol. Macromol. 58, 57–65 (2013).
[Crossref] [PubMed]

J. Biomed. Nanotechnol. (1)

R. Singh and H. Nalwa, “Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs,” J. Biomed. Nanotechnol. 7, 489–503 (2011).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

M. Chastellain, A. Petri, and H. Hofmann, “Particle size investigations of a multistep synthesis of pva coated superparamagnetic nanoparticles,” J. Colloid Interface Sci. 278, 353–360 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 42, 1–15 (2009).
[Crossref]

Langmuir (1)

S. Dominguez-Medina, S. McDonough, P. Swanglap, C. Landes, and S. Link, “In situ measurement of bovine serum albumin interaction with gold nanospheres,” Langmuir 28, 9131–9139 (2012).
[Crossref] [PubMed]

Microsc. Res. Tech. (1)

J. Robinson, T. Takizawa, D. Vandré, and R. Burry, “Ultrasmall immunogold particles: Important probes for immunocytochemistry,” Microsc. Res. Tech. 42, 13–23 (1998).
[Crossref] [PubMed]

Nanomedicine (1)

A. Gupta, R. Naregalkar, V. Vaidya, and M. Gupta, “Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications,” Nanomedicine 2, 23–39 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

C. Rocker, M. Potzl, F. Zhang, W. Parak, and G. Nienhaus, “A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles,” Nat. Nanotechnol. 4, 577–580 (2009).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U. S. A. (1)

T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. Dawson, and S. Linse, “Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles,” Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007).
[Crossref] [PubMed]

RSC Adv. (1)

L. Maurizi, U. Sakulkhu, L. Crowe, V. Dao, N. Leclaire, J.-P. Vallee, and H. Hofmann, “Syntheses of cross-linked polymeric superparamagnetic beads with tunable properties,” RSC Adv. 4, 11142–11146 (2014).
[Crossref]

Sci. Rep. (1)

U. Sakulkhu, M. Mahmoudi, L. Maurizi, J. Salaklang, and H. Hofmann, “Protein corona composition of super-paramagnetic iron oxide nanoparticles with various physico-chemical properties and coatings,” Sci. Rep. 4, 1–9 (2014).
[Crossref]

Other (4)

J. Izatt and M. Choma, Optical Coherence Tomography: Technology and Applications (Springer Verlag, Berlin, 2008).

H. Kenneth Walker, W. Dallas Hall, and J. Willis Hurst, Clinical Methods, 3rd edition; The History, Physical, and Laboratory Examinations; Chapter 101: Serum Albumin and Globulin (Butterworths, 1990).

B. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics. Chapter 5: Model Systems of Spherical Molecules (John Wiley and Sons, 1976).

N. L. Thompson, Fluorescence correlation spectroscopy. In: Topics in Fluorescence Spectroscopy, vol. 1 (Plenum Press, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Visible light OCCS interferometer with a Bessel-Gauss configuration [18]. The axicon generates a Bessel beam illumination, whereas the detection mode is Gaussian. The apertures Fill and Fdet provide a dark field contrast [21].

Fig. 2
Fig. 2

Signal processing leading to the time-dependent signal traces. The interference signal is recorded via a spectrometer. The average spectrum is then subtracted from the recorded signal (background subtraction). The new DFT integration kernel replaces the following steps: (i) λ to k mapping; (ii) dispersion compensation; (iii) fast Fourier transform of the spectrum; and (iv) selection of the sampling volumes of interest. The modulus of the signal is taken to yield the time-dependent signal traces.

Fig. 3
Fig. 3

Brightness profiles characterization. (a,c) Brightness profile cross-sections xy and xz measured with a ∅50 nm single gold NP. Scalebars: 1 μm. (b,d) Average radial ρ = x 2 + y 2 and axial (z) brightness profiles measured on ten ∅50 nm gold NPs in comparison with calculations. (e) Depth of field characterization with ∅109 nm PS MSs freely diffusing in water (concentration: 330 pM; illumination power: 5 mW; average on 10 measurements of 50 seconds). The useful DOF is indicated by the dashed lines showing the measured FWHM. V0 corresponds to the focal sampling volume. The calculations in (b) and (e) were performed using the focus field calculation framework by Leutenegger et al. [29]. The coherence gate in (d) is calculated from the measured source spectrum S(k) using the Wiener-Khintchine relation.

Fig. 4
Fig. 4

SNR measurements with different diaphragm Fdet settings and corresponding detection NA. The solid line starts at the SNR measured with 1mm opening and follows the increase of the solid detection angle.

Fig. 5
Fig. 5

(a) Normalized OCCS curves from gold NPs in V0 of different diameters in glycerol/water solutions with 60% w/w of glycerol. Thin lines with markers show the average auto-correlations in V0 of 10 measurements lasting 50 seconds each (line rate of 20 kHz with an exposure time of 48 μs). Thick lines show the fits using Eq. (1) and the residuals. (b) The extracted diffusion coefficients from V−2 to V2 matched well with the theoretical values.

Fig. 6
Fig. 6

OCCS of mixtures with two particle species. (a) Normalized OCCS auto-correlation curves from mixtures with different fractions of ∅40 nm gold NPs and ∅109 nm PS MSs in V0. Thin lines with markers show the average auto-correlations in V0 of 10 measurements lasting 20 seconds each (line rate of 50 kHz with an exposure time of 18 μs; illumination power of 5 mW). Thick lines show the fits using Eq. (2) and the residuals. (b) The measured fraction of the species P 1 ¯ versus the mixed fraction P1. The red line represents the prepared values. The dotted black line is the linear regression of the measured P 1 ¯.

Fig. 7
Fig. 7

Adsorption of BSA on SPIONs. (a) Normalized OCCS auto-correlation curves in V0 of SPIONs 330 pM with 3.3 μM BSA and without BSA. Thin lines with markers show the average auto-correlations in V0 of 20 measurements lasting 20 seconds each (line rate of 50 kHz with an exposure time of 18 μs; illumination power of 5 mW). Thick lines show the fitting results using Eq. (1) and the residuals. The extracted hydrodynamic radii were RH = 21.4 nm without BSA and 22.5 nm with BSA. (b) The hydrodynamic radii of the NPs versus BSA concentration. The thick red line corresponds to a fit with Eq. (5). (c) Distribution of hydrodynamic radii extracted from V−2 to V2 of the auto-correlations.

Tables (1)

Tables Icon

Table 1 Typical values of the calibrated fit parameters for the focal sampling V0.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G F , m ( τ ) = γ N [ ( 1 + τ τ xy ) 1 + τ τ z ] 1 ( 1 + A b exp ( τ τ b ) ) ( 1 + N exp ( τ τ c ) ) ,
G F , m mix ( τ ) = γ ( 1 B I m ) 2 N i Q i 2 D F , m , i ( τ ) ( N i Q i ) 2 ,
D F , m , i ( τ ) = [ ( 1 + τ τ xy , i ) 1 + τ τ z , i ] 1 ( 1 + A b exp ( τ τ b , i ) ) ( 1 + N i exp ( τ τ c , i ) ) .
SNR = I m 2 σ N 2 ,
R H ( N ) = R H ( 0 ) 1 + c N 3 ,
N = N max 1 1 + ( K D / C BSA ) h ,

Metrics