Abstract

We report a sampled grating distributed Bragg reflector (SGDBR) laser with two different gratings which mode-lock independently at respective pulse repetition frequencies of 640 and 700 GHz. The device operates in distinct regimes depending on the bias conditions, with stable pulse trains observed at 640 GHz, 700 GHz, the mean repetition frequency of 666 GHz, and the sum frequency of 1.34 THz (due to nonlinear mixing). Performance is consistent and highly reproducible with exceptional stability observed over wide ranges of drive bias conditions. Furthermore, a monolithically integrated semiconductor optical amplifier is used to amplify the pulse trains, providing an average output power of 46 mW at 666 GHz.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Portnoi and A. V. Chelnokov, “Passive mode-locking in a short cavity laser,” in Dig. 12th IEEE Semiconductor Conf., Davos, Switzerland, 140–141 (1990).
    [CrossRef]
  2. Y. Wen, D. Novak, H. Liu, and A. Nirmalathus, “Generation of 140GHz optical pulses with suppressed amplitude modulation by subharmonic synchronous mode locking of Fabry-Perot semiconductor laser,” Electron. Lett. 37(9), 581–582 (2001).
    [CrossRef]
  3. T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett. 33(22), 1868–1869 (1997).
    [CrossRef]
  4. S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32(7), 1211–1224 (1996).
    [CrossRef]
  5. D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast Harmonic Mode-Locking of Monolithic Compound-Cavity Laser Diodes Incorporating Photonic-Bandgap Reflectors,” IEEE J. Quantum Electron. 38(1), 1–11 (2002).
    [CrossRef]
  6. L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. C. Bryce, “Monolithic 40 GHz passively mode-locked AlGaInAs/InP 1.55 μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett. 22(20), 1503–1505 (2010).
    [CrossRef]
  7. M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
    [CrossRef]
  8. Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17(13), 2018–2023 (2007).
    [CrossRef]
  9. L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. N. Ironside, M. Sorel, and A. C. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode locked AlGaInAs/InP 1.55 μm strained quantum well laser,” IEEE Photon. Technol. Lett. 21(23), 1731–1733 (2009).
    [CrossRef]
  10. V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sample gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
    [CrossRef]
  11. B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1305 (1975).
    [CrossRef]
  12. M. C. Aman and J. Buus, “Tunable semiconductor lasers,” Astech House, Norwood, MA, 1998.
  13. L. Hou, M. Haji, J. Akbar, and J. H. Marsh, “Narrow linewidth laterally-coupled 1.55μm AlGaInAs_InP DFB laser integrated with a curved tapered SOA,” Opt. Lett. 37(21), 4525–4527 (2012).
    [CrossRef] [PubMed]
  14. J. Fricke, H. Wenzel, M. Matalla, A. Klehr, and G. Erbert, “980-nm DBR lasers using higher order gratings defined by i-line lithography,” Semicond. Sci. Technol. 20(11), 1149–1152 (2005).
    [CrossRef]
  15. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifier,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
    [CrossRef]
  16. S. Spiessberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm,” J. Lightwave Technol. 28(17), 2611–2616 (2010).
    [CrossRef]

2012

2010

S. Spiessberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm,” J. Lightwave Technol. 28(17), 2611–2616 (2010).
[CrossRef]

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. C. Bryce, “Monolithic 40 GHz passively mode-locked AlGaInAs/InP 1.55 μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett. 22(20), 1503–1505 (2010).
[CrossRef]

2009

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. N. Ironside, M. Sorel, and A. C. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode locked AlGaInAs/InP 1.55 μm strained quantum well laser,” IEEE Photon. Technol. Lett. 21(23), 1731–1733 (2009).
[CrossRef]

2007

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17(13), 2018–2023 (2007).
[CrossRef]

2005

J. Fricke, H. Wenzel, M. Matalla, A. Klehr, and G. Erbert, “980-nm DBR lasers using higher order gratings defined by i-line lithography,” Semicond. Sci. Technol. 20(11), 1149–1152 (2005).
[CrossRef]

2002

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast Harmonic Mode-Locking of Monolithic Compound-Cavity Laser Diodes Incorporating Photonic-Bandgap Reflectors,” IEEE J. Quantum Electron. 38(1), 1–11 (2002).
[CrossRef]

2001

Y. Wen, D. Novak, H. Liu, and A. Nirmalathus, “Generation of 140GHz optical pulses with suppressed amplitude modulation by subharmonic synchronous mode locking of Fabry-Perot semiconductor laser,” Electron. Lett. 37(9), 581–582 (2001).
[CrossRef]

2000

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

1997

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett. 33(22), 1868–1869 (1997).
[CrossRef]

1996

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32(7), 1211–1224 (1996).
[CrossRef]

1993

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sample gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[CrossRef]

1989

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifier,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

1975

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1305 (1975).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifier,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

Akbar, J.

Arahira, S.

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32(7), 1211–1224 (1996).
[CrossRef]

Aravazhi, S.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17(13), 2018–2023 (2007).
[CrossRef]

Avrutin, E. A.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast Harmonic Mode-Locking of Monolithic Compound-Cavity Laser Diodes Incorporating Photonic-Bandgap Reflectors,” IEEE J. Quantum Electron. 38(1), 1–11 (2002).
[CrossRef]

Brox, O.

Bryce, A. C.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. C. Bryce, “Monolithic 40 GHz passively mode-locked AlGaInAs/InP 1.55 μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett. 22(20), 1503–1505 (2010).
[CrossRef]

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. N. Ironside, M. Sorel, and A. C. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode locked AlGaInAs/InP 1.55 μm strained quantum well laser,” IEEE Photon. Technol. Lett. 21(23), 1731–1733 (2009).
[CrossRef]

Chelnokov, A. V.

E. L. Portnoi and A. V. Chelnokov, “Passive mode-locking in a short cavity laser,” in Dig. 12th IEEE Semiconductor Conf., Davos, Switzerland, 140–141 (1990).
[CrossRef]

Chuang, Z. M.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sample gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[CrossRef]

Coldren, L. A.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sample gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[CrossRef]

Dylewicz, R.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. C. Bryce, “Monolithic 40 GHz passively mode-locked AlGaInAs/InP 1.55 μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett. 22(20), 1503–1505 (2010).
[CrossRef]

Erbert, G.

S. Spiessberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm,” J. Lightwave Technol. 28(17), 2611–2616 (2010).
[CrossRef]

J. Fricke, H. Wenzel, M. Matalla, A. Klehr, and G. Erbert, “980-nm DBR lasers using higher order gratings defined by i-line lithography,” Semicond. Sci. Technol. 20(11), 1149–1152 (2005).
[CrossRef]

Fricke, J.

J. Fricke, H. Wenzel, M. Matalla, A. Klehr, and G. Erbert, “980-nm DBR lasers using higher order gratings defined by i-line lithography,” Semicond. Sci. Technol. 20(11), 1149–1152 (2005).
[CrossRef]

Gramlich, V.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17(13), 2018–2023 (2007).
[CrossRef]

Green, R.

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. N. Ironside, M. Sorel, and A. C. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode locked AlGaInAs/InP 1.55 μm strained quantum well laser,” IEEE Photon. Technol. Lett. 21(23), 1731–1733 (2009).
[CrossRef]

Gu, P.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Günter, P.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17(13), 2018–2023 (2007).
[CrossRef]

Haji, M.

L. Hou, M. Haji, J. Akbar, and J. H. Marsh, “Narrow linewidth laterally-coupled 1.55μm AlGaInAs_InP DFB laser integrated with a curved tapered SOA,” Opt. Lett. 37(21), 4525–4527 (2012).
[CrossRef] [PubMed]

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. C. Bryce, “Monolithic 40 GHz passively mode-locked AlGaInAs/InP 1.55 μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett. 22(20), 1503–1505 (2010).
[CrossRef]

Hakki, B. W.

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1305 (1975).
[CrossRef]

Hidaka, T.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Hou, L.

L. Hou, M. Haji, J. Akbar, and J. H. Marsh, “Narrow linewidth laterally-coupled 1.55μm AlGaInAs_InP DFB laser integrated with a curved tapered SOA,” Opt. Lett. 37(21), 4525–4527 (2012).
[CrossRef] [PubMed]

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. C. Bryce, “Monolithic 40 GHz passively mode-locked AlGaInAs/InP 1.55 μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett. 22(20), 1503–1505 (2010).
[CrossRef]

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. N. Ironside, M. Sorel, and A. C. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode locked AlGaInAs/InP 1.55 μm strained quantum well laser,” IEEE Photon. Technol. Lett. 21(23), 1731–1733 (2009).
[CrossRef]

Hyodo, M.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Ironside, C. N.

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. N. Ironside, M. Sorel, and A. C. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode locked AlGaInAs/InP 1.55 μm strained quantum well laser,” IEEE Photon. Technol. Lett. 21(23), 1731–1733 (2009).
[CrossRef]

Javaloyes, J.

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. N. Ironside, M. Sorel, and A. C. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode locked AlGaInAs/InP 1.55 μm strained quantum well laser,” IEEE Photon. Technol. Lett. 21(23), 1731–1733 (2009).
[CrossRef]

Jayaraman, V.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sample gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[CrossRef]

Jazbinsek, M.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17(13), 2018–2023 (2007).
[CrossRef]

Klehr, A.

J. Fricke, H. Wenzel, M. Matalla, A. Klehr, and G. Erbert, “980-nm DBR lasers using higher order gratings defined by i-line lithography,” Semicond. Sci. Technol. 20(11), 1149–1152 (2005).
[CrossRef]

Liu, H.

Y. Wen, D. Novak, H. Liu, and A. Nirmalathus, “Generation of 140GHz optical pulses with suppressed amplitude modulation by subharmonic synchronous mode locking of Fabry-Perot semiconductor laser,” Electron. Lett. 37(9), 581–582 (2001).
[CrossRef]

Marsh, J. H.

L. Hou, M. Haji, J. Akbar, and J. H. Marsh, “Narrow linewidth laterally-coupled 1.55μm AlGaInAs_InP DFB laser integrated with a curved tapered SOA,” Opt. Lett. 37(21), 4525–4527 (2012).
[CrossRef] [PubMed]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast Harmonic Mode-Locking of Monolithic Compound-Cavity Laser Diodes Incorporating Photonic-Bandgap Reflectors,” IEEE J. Quantum Electron. 38(1), 1–11 (2002).
[CrossRef]

Matalla, M.

J. Fricke, H. Wenzel, M. Matalla, A. Klehr, and G. Erbert, “980-nm DBR lasers using higher order gratings defined by i-line lithography,” Semicond. Sci. Technol. 20(11), 1149–1152 (2005).
[CrossRef]

Matsui, Y.

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32(7), 1211–1224 (1996).
[CrossRef]

McDougall, S. D.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast Harmonic Mode-Locking of Monolithic Compound-Cavity Laser Diodes Incorporating Photonic-Bandgap Reflectors,” IEEE J. Quantum Electron. 38(1), 1–11 (2002).
[CrossRef]

Mutter, L.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17(13), 2018–2023 (2007).
[CrossRef]

Nirmalathus, A.

Y. Wen, D. Novak, H. Liu, and A. Nirmalathus, “Generation of 140GHz optical pulses with suppressed amplitude modulation by subharmonic synchronous mode locking of Fabry-Perot semiconductor laser,” Electron. Lett. 37(9), 581–582 (2001).
[CrossRef]

Novak, D.

Y. Wen, D. Novak, H. Liu, and A. Nirmalathus, “Generation of 140GHz optical pulses with suppressed amplitude modulation by subharmonic synchronous mode locking of Fabry-Perot semiconductor laser,” Electron. Lett. 37(9), 581–582 (2001).
[CrossRef]

Ogawa, Y.

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32(7), 1211–1224 (1996).
[CrossRef]

Ogura, I.

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett. 33(22), 1868–1869 (1997).
[CrossRef]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifier,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

Paoli, T. L.

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1305 (1975).
[CrossRef]

Portnoi, E. L.

E. L. Portnoi and A. V. Chelnokov, “Passive mode-locking in a short cavity laser,” in Dig. 12th IEEE Semiconductor Conf., Davos, Switzerland, 140–141 (1990).
[CrossRef]

Qiu, B.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. C. Bryce, “Monolithic 40 GHz passively mode-locked AlGaInAs/InP 1.55 μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett. 22(20), 1503–1505 (2010).
[CrossRef]

Ruiz, B.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17(13), 2018–2023 (2007).
[CrossRef]

Sakai, K.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Schiemangk, M.

Schneider, A.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17(13), 2018–2023 (2007).
[CrossRef]

Shimizu, T.

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett. 33(22), 1868–1869 (1997).
[CrossRef]

Sorel, M.

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. N. Ironside, M. Sorel, and A. C. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode locked AlGaInAs/InP 1.55 μm strained quantum well laser,” IEEE Photon. Technol. Lett. 21(23), 1731–1733 (2009).
[CrossRef]

Spiessberger, S.

Stillhart, M.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17(13), 2018–2023 (2007).
[CrossRef]

Stolarz, P.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. C. Bryce, “Monolithic 40 GHz passively mode-locked AlGaInAs/InP 1.55 μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett. 22(20), 1503–1505 (2010).
[CrossRef]

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. N. Ironside, M. Sorel, and A. C. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode locked AlGaInAs/InP 1.55 μm strained quantum well laser,” IEEE Photon. Technol. Lett. 21(23), 1731–1733 (2009).
[CrossRef]

Street, M. W.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast Harmonic Mode-Locking of Monolithic Compound-Cavity Laser Diodes Incorporating Photonic-Bandgap Reflectors,” IEEE J. Quantum Electron. 38(1), 1–11 (2002).
[CrossRef]

Tani, M.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Thayne, I. G.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast Harmonic Mode-Locking of Monolithic Compound-Cavity Laser Diodes Incorporating Photonic-Bandgap Reflectors,” IEEE J. Quantum Electron. 38(1), 1–11 (2002).
[CrossRef]

Wen, Y.

Y. Wen, D. Novak, H. Liu, and A. Nirmalathus, “Generation of 140GHz optical pulses with suppressed amplitude modulation by subharmonic synchronous mode locking of Fabry-Perot semiconductor laser,” Electron. Lett. 37(9), 581–582 (2001).
[CrossRef]

Wenzel, H.

S. Spiessberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm,” J. Lightwave Technol. 28(17), 2611–2616 (2010).
[CrossRef]

J. Fricke, H. Wenzel, M. Matalla, A. Klehr, and G. Erbert, “980-nm DBR lasers using higher order gratings defined by i-line lithography,” Semicond. Sci. Technol. 20(11), 1149–1152 (2005).
[CrossRef]

Wicht, A.

Yang, Z.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17(13), 2018–2023 (2007).
[CrossRef]

Yanson, D. A.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast Harmonic Mode-Locking of Monolithic Compound-Cavity Laser Diodes Incorporating Photonic-Bandgap Reflectors,” IEEE J. Quantum Electron. 38(1), 1–11 (2002).
[CrossRef]

Yokoyama, H.

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett. 33(22), 1868–1869 (1997).
[CrossRef]

Adv. Funct. Mater.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17(13), 2018–2023 (2007).
[CrossRef]

Electron. Lett.

Y. Wen, D. Novak, H. Liu, and A. Nirmalathus, “Generation of 140GHz optical pulses with suppressed amplitude modulation by subharmonic synchronous mode locking of Fabry-Perot semiconductor laser,” Electron. Lett. 37(9), 581–582 (2001).
[CrossRef]

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett. 33(22), 1868–1869 (1997).
[CrossRef]

IEEE J. Quantum Electron.

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32(7), 1211–1224 (1996).
[CrossRef]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast Harmonic Mode-Locking of Monolithic Compound-Cavity Laser Diodes Incorporating Photonic-Bandgap Reflectors,” IEEE J. Quantum Electron. 38(1), 1–11 (2002).
[CrossRef]

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sample gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[CrossRef]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifier,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. N. Ironside, M. Sorel, and A. C. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode locked AlGaInAs/InP 1.55 μm strained quantum well laser,” IEEE Photon. Technol. Lett. 21(23), 1731–1733 (2009).
[CrossRef]

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. C. Bryce, “Monolithic 40 GHz passively mode-locked AlGaInAs/InP 1.55 μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett. 22(20), 1503–1505 (2010).
[CrossRef]

J. Appl. Phys.

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1305 (1975).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Opt. Quantum Electron.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Semicond. Sci. Technol.

J. Fricke, H. Wenzel, M. Matalla, A. Klehr, and G. Erbert, “980-nm DBR lasers using higher order gratings defined by i-line lithography,” Semicond. Sci. Technol. 20(11), 1149–1152 (2005).
[CrossRef]

Other

E. L. Portnoi and A. V. Chelnokov, “Passive mode-locking in a short cavity laser,” in Dig. 12th IEEE Semiconductor Conf., Davos, Switzerland, 140–141 (1990).
[CrossRef]

M. C. Aman and J. Buus, “Tunable semiconductor lasers,” Astech House, Norwood, MA, 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Optical microscope picture of the device, (b) schematic of the side-wall SGDBR and the inset shows the SEM picture of the side-wall grating burst of first-order with a 50% duty cycle and 0.6 μm depth recesses.

Fig. 2
Fig. 2

(a) schematic of the experimental SGDBR MLL showing the effective length of the main cavity, rear and front SGDBR sections, (b) calculated power reflectivity of the rear and front SGDBRs, (c) calculated total transmission from the SOA output facet, the enlarged inset shows the internal fundamental mode spacing of 0.19 nm of the main cavity with an effective length of 1770 µm, (d) computed net gain of the ML-SGDBR LD which shows the wavelength peaks corresponding to reflections from the rear (black text) and front (red text) SGDBR segments.

Fig. 3
Fig. 3

(a) Output power from rear SGDBR side versus IRear-SGDBR for different VSA (from 0 V to −3 V in −0.5 V steps), the gain, front SGDBR, and SOA sections were floating. (b) Output power vs IGain for different ISOA values (from 0 mA to 350 mA in 50 mA steps) for VSA = −3.0 V with IFront-SGDBR = 0 mA, and rear SGDBR section floating.

Fig. 4
Fig. 4

Device performance measured from the rear SGDBR side output facet with VSA = −2.9V and the gain, front SGDBR, and SOA sections floating: (a) 2D optical spectral map from the rear SGDBR side as a function of rear SGDBR current where the additional reflection peaks from the from SGDBR can be clearly seen, (b) corresponding autocorrelation traces with an average period of 1.56 ps at IRear-SGDBR = 272 mA. Device performance measured from the rear SGDBR side output facet with VSA = −2.2V, IRear-SGDBR = IFront-SGDBR = 0 mA and SOA section floating: (c) 2D optical spectral map from the rear SGDBR side as a function of gain current where low intensity reflection peaks between the main peaks can be clearly seen; (d) corresponding autocorrelation traces with an average period of 1.4 ps at IGain = 280 mA.

Fig. 5
Fig. 5

Device performance measured from the SOA side output facet with IFront-SGDBR = 0 mA and the rear SGDBR floating: (a) 2D optical spectra from the SOA side as a function of SOA current when VSA = −2.9 V and IGain = 260 mA, (b) simulated FFT spectrum from Eq. (2), (c) optical spectrum with inset showing the fundamental mode spacing of the 1770 µm long main cavity (0.18 nm), and (d) corresponding measured and simulated autocorrelation pulse train with VSA = −2.9V, IGain = 260 mA, and ISOA = 80 mA.

Fig. 6
Fig. 6

Device performance measured from the SOA side output facet with VSA = −2.1V, ISOA = 250 mA, IFront-SGDBR = 0 mA, and rear SGDBR section were floating: (a) 2D optical spectral map from SOA side as a function of gain current where the lasing modes can be clearly seen as high intensity regions, (inset: SPM effects producing the mean frequency defined by the modal interaction between the rear and front SGDBRs), (b) optical spectrum, (c) corresponding autocorrelation traces and (d) an isolated AC pulse fitted in red by a sech2 pulse shape with a FWHM of 0.78 ps and corresponding deconvolved pulse length 0.51 ps measured at VSA = −2.1V, IGain = 300 mA, ISOA = 250 mA.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G net =Γg[ α+ 1 2 L Effcav ln{ 1 R rearSGDBR R frontSGDBR } ]
s(t)= f f (t)× f r (t)= A f cos(2π f f t) A r cos(2π f r t) =0.5 A f A r [ cos( 2π( f f + f r )t )+cos( 2π( f f f r )t ) ]

Metrics