Abstract

In this paper we demonstrate silicon on insulator (SOI) sub-wavelength grating (SWG) optical components for integrated optics and sensing. Light propagation in SWG devices is studied and realized with no cladding on top of the waveguide. In particular, we focused on SWG bends, tapers and directional couplers, all realized with compatible geometries in order to be used as building blocks for more complex integrated optics devices (interferometers, switches, resonators, etc.). Fabricated SWG tapers for TE and TM polarizations are described; they allow for connecting SWG devices to regular strip waveguides with loss lower than 1 dB per taper. Our SWG directional coupler presents a very compact design and a negligible wavelength dependence of its crossover length (and as a consequence of its coupling coefficient, κ), over a 40 nm bandwidth. This wavelength flatten response represents a bandwidth enhancement with respect to standard directional couplers (made using strip or rib waveguides), in particular for the TE mode. SWG bends are demonstrated, their loss dependence on radius is analyzed, and fabricated bends have a loss in the range 0.8-1.6 dB per 90 degrees bend. Simulated and measured results show promise for large-scale fabrication of complex optical devices and high sensitivity sensors based on SWG waveguides with engineered optical properties, tailored to specific applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  3. L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University Press, 2014)
  4. S. Selvaraja, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, D. Vermeulen, G. Sterckx, G.Winroth, P. Verheyen, G. Lepage, W. Bogaerts, R. Baets, J. Van Campenhout and P. Absil, “Advanced 300-mm waferscale patterning for silicon photonics devices with record low loss and phase errors,” 17th Opto-Electronics and Communications Conference-OECC, PDP2–2, (2012).
  5. Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).
  6. B. Jalali and S. Fathpour, “Silicon photonics,” IEEE J. Lightw. Tech. 24(12), 4600–4615 (2006).
    [CrossRef]
  7. R. Soref, “Silicon photonics: a review of recent literature,” Silicon. 2(1), 1–6 (2010).
    [CrossRef]
  8. S. Talebifard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” SPIE OPTO 862909 (2014).
  9. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
    [CrossRef] [PubMed]
  10. V. Donzella, S. Talebi Fard, and L. Chrostowski, “Modelling of asymmetric slot racetracks for improved bio-sensors performance,” Numerical Simulation of Optoelectronic Devices (NUSOD), 2013 13th International Conference on pp.25,26 (2013).
  11. X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics 6(10), 821–828 (2013).
    [PubMed]
  12. S. Talebifard, V. Donzella, S. A. Schmidt, D. M. Ratner, R. J. Bojko, and L. Chrostowski, “Sensitivity analysis of thin waveguide SOI ring resonators for sensing applications,” IEEE Photonics Conference (IPC) pp.616–617, (2013).
  13. J. H. E. Kim, L. Chrostowski, E. Bisaillon, and D. V. Plant, “DBR, Sub-wavelength grating, and photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD,” Opt. Express 15(16), 10330–10339 (2007).
    [CrossRef] [PubMed]
  14. D. Nir, Z. Weissman, S. Ruschin, and A. Hardy, “Periodically segmented waveguides in Ti:LiNbO3,” Opt. Lett. 19(12), 880–882 (1994).
    [CrossRef] [PubMed]
  15. K. Thyagarajan, C. W. Chien, R. V. Ramaswamy, H. S. Kim, and H. C. Cheng, “Proton-exchange periodically segmented waveguides in LiNbO3,” Opt. Lett. 19(12), 880 (1994).
    [CrossRef] [PubMed]
  16. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D. X. Xu, S. Janz, A. Densmore, T. J. Hall, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18(15), 16146–16155 (2010).
    [CrossRef] [PubMed]
  17. X. Wang, S. Grist, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
    [CrossRef] [PubMed]
  18. R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
    [CrossRef] [PubMed]
  19. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
    [CrossRef] [PubMed]
  20. X. Wang, Y. Wang, J. Flueckiger, R Bojko, A. Liu, A. Reid, J. Pond, N.A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” submitted.
  21. D. Ortega, J. M. Aldariz, J. M. Arnold, and J. S. Aitchison, “Analysis of “quasi-modes” in periodic segmented waveguides,” J. Lightw. Tech. 17(2), 369–375 (1999).
    [CrossRef]
  22. S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
    [CrossRef] [PubMed]
  23. www.lumerical.com
  24. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J Lightw. Tech. 15(8), 1263–1276 (1997).
  25. Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
    [CrossRef]
  26. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
    [CrossRef]
  27. Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Fully-etched grating coupler with low back reflection,” SPIE Photonics North 89150U (2013).
  28. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
    [CrossRef] [PubMed]
  29. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010).
    [CrossRef] [PubMed]
  30. T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett. 20(1), 33–35 (2008).
    [CrossRef]
  31. M. Thorhauge, L. H. Frandsen, and P. I. Borel, “Efficient photonic crystal directional couplers,” Opt. Lett. 28(17), 1525–1527 (2003).
    [CrossRef] [PubMed]
  32. V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, Photonics North 2013, 89150Z (2013).
  33. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
    [CrossRef] [PubMed]
  34. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” Optical Fiber Communication Conference, pp. Th2A.37 (2014).
    [CrossRef]

2014 (1)

2013 (5)

X. Wang, S. Grist, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
[CrossRef] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[CrossRef] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics 6(10), 821–828 (2013).
[PubMed]

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).

V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, Photonics North 2013, 89150Z (2013).

2012 (1)

2011 (1)

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[CrossRef]

2010 (4)

2009 (1)

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[CrossRef]

2008 (2)

T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett. 20(1), 33–35 (2008).
[CrossRef]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” IEEE J. Lightw. Tech. 24(12), 4600–4615 (2006).
[CrossRef]

2003 (1)

1999 (1)

D. Ortega, J. M. Aldariz, J. M. Arnold, and J. S. Aitchison, “Analysis of “quasi-modes” in periodic segmented waveguides,” J. Lightw. Tech. 17(2), 369–375 (1999).
[CrossRef]

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J Lightw. Tech. 15(8), 1263–1276 (1997).

1994 (2)

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[CrossRef]

Aitchison, J. S.

D. Ortega, J. M. Aldariz, J. M. Arnold, and J. S. Aitchison, “Analysis of “quasi-modes” in periodic segmented waveguides,” J. Lightw. Tech. 17(2), 369–375 (1999).
[CrossRef]

Aldariz, J. M.

D. Ortega, J. M. Aldariz, J. M. Arnold, and J. S. Aitchison, “Analysis of “quasi-modes” in periodic segmented waveguides,” J. Lightw. Tech. 17(2), 369–375 (1999).
[CrossRef]

Arnold, J. M.

D. Ortega, J. M. Aldariz, J. M. Arnold, and J. S. Aitchison, “Analysis of “quasi-modes” in periodic segmented waveguides,” J. Lightw. Tech. 17(2), 369–375 (1999).
[CrossRef]

Baehr-Jones, T.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[CrossRef]

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

Beggs, D. M.

Bisaillon, E.

Bock, P. J.

Bojko, R

X. Wang, Y. Wang, J. Flueckiger, R Bojko, A. Liu, A. Reid, J. Pond, N.A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” submitted.

Bojko, R. J.

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[CrossRef] [PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[CrossRef]

S. Talebifard, V. Donzella, S. A. Schmidt, D. M. Ratner, R. J. Bojko, and L. Chrostowski, “Sensitivity analysis of thin waveguide SOI ring resonators for sensing applications,” IEEE Photonics Conference (IPC) pp.616–617, (2013).

Borel, P. I.

Cheben, P.

Chen, Y.

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[CrossRef]

Cheng, H. C.

Cheung, K. C.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics 6(10), 821–828 (2013).
[PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[CrossRef] [PubMed]

Chien, C. W.

Chrostowski, L.

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[CrossRef] [PubMed]

X. Wang, S. Grist, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
[CrossRef] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics 6(10), 821–828 (2013).
[PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[CrossRef] [PubMed]

V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, Photonics North 2013, 89150Z (2013).

J. H. E. Kim, L. Chrostowski, E. Bisaillon, and D. V. Plant, “DBR, Sub-wavelength grating, and photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD,” Opt. Express 15(16), 10330–10339 (2007).
[CrossRef] [PubMed]

S. Talebifard, V. Donzella, S. A. Schmidt, D. M. Ratner, R. J. Bojko, and L. Chrostowski, “Sensitivity analysis of thin waveguide SOI ring resonators for sensing applications,” IEEE Photonics Conference (IPC) pp.616–617, (2013).

X. Wang, Y. Wang, J. Flueckiger, R Bojko, A. Liu, A. Reid, J. Pond, N.A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” submitted.

Chung, Y.

T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett. 20(1), 33–35 (2008).
[CrossRef]

Citrin, D. S.

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[CrossRef]

Delâge, A.

Densmore, A.

Ding, R.

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

Doerfler, M.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics 6(10), 821–828 (2013).
[PubMed]

Donzella, V.

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[CrossRef] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[CrossRef] [PubMed]

V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, Photonics North 2013, 89150Z (2013).

S. Talebifard, V. Donzella, S. A. Schmidt, D. M. Ratner, R. J. Bojko, and L. Chrostowski, “Sensitivity analysis of thin waveguide SOI ring resonators for sensing applications,” IEEE Photonics Conference (IPC) pp.616–617, (2013).

Fard, S. T.

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[CrossRef] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics 6(10), 821–828 (2013).
[PubMed]

Fathpour, S.

B. Jalali and S. Fathpour, “Silicon photonics,” IEEE J. Lightw. Tech. 24(12), 4600–4615 (2006).
[CrossRef]

Feng, J.

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[CrossRef]

Flueckiger, J.

Frandsen, L. H.

Gould, M.

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

Grist, S.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics 6(10), 821–828 (2013).
[PubMed]

X. Wang, S. Grist, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
[CrossRef] [PubMed]

Grist, S. M.

Halir, R.

Hall, T. J.

Hardy, A.

Harris, N. C.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J Lightw. Tech. 15(8), 1263–1276 (1997).

Hochberg, M.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[CrossRef]

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

Jaeger, N. A.

Jaeger, N.A. F.

X. Wang, Y. Wang, J. Flueckiger, R Bojko, A. Liu, A. Reid, J. Pond, N.A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” submitted.

Jalali, B.

B. Jalali and S. Fathpour, “Silicon photonics,” IEEE J. Lightw. Tech. 24(12), 4600–4615 (2006).
[CrossRef]

Janz, S.

Khan, M. H.

Kim, H. S.

Kim, J. H. E.

Kirk, J.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics 6(10), 821–828 (2013).
[PubMed]

Kirk, J. T.

Krauss, T. F.

Kwok, E.

Lamontagne, B.

Lapointe, J.

Lee, D.

T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett. 20(1), 33–35 (2008).
[CrossRef]

Lee, T.

T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett. 20(1), 33–35 (2008).
[CrossRef]

Li, J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[CrossRef]

Li, Y.

Lim, A.

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

Liow, T. Y.

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

Liu, A.

X. Wang, Y. Wang, J. Flueckiger, R Bojko, A. Liu, A. Reid, J. Pond, N.A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” submitted.

Liu, Q. Y.

Liu, Y.

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

Lo, G. Q.

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

Lopinski, G.

Ma, R.

Ma, Y.

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

Maese-Novo, A.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J Lightw. Tech. 15(8), 1263–1276 (1997).

Molina-Fernández, I.

Nir, D.

Novack, A.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).

O’Faolain, L.

Ortega, D.

D. Ortega, J. M. Aldariz, J. M. Arnold, and J. S. Aitchison, “Analysis of “quasi-modes” in periodic segmented waveguides,” J. Lightw. Tech. 17(2), 369–375 (1999).
[CrossRef]

Ortega-Moñux, A.

Plant, D. V.

Pond, J.

X. Wang, Y. Wang, J. Flueckiger, R Bojko, A. Liu, A. Reid, J. Pond, N.A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” submitted.

Qi, M.

Ramaswamy, R. V.

Ran, D.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).

Ratner, D. M.

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[CrossRef] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[CrossRef] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics 6(10), 821–828 (2013).
[PubMed]

S. Talebifard, V. Donzella, S. A. Schmidt, D. M. Ratner, R. J. Bojko, and L. Chrostowski, “Sensitivity analysis of thin waveguide SOI ring resonators for sensing applications,” IEEE Photonics Conference (IPC) pp.616–617, (2013).

Reid, A.

X. Wang, Y. Wang, J. Flueckiger, R Bojko, A. Liu, A. Reid, J. Pond, N.A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” submitted.

Ruschin, S.

Schmid, J. H.

Schmidt, S.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics 6(10), 821–828 (2013).
[PubMed]

Schmidt, S. A.

Shen, H.

Shi, W.

Soref, R.

R. Soref, “Silicon photonics: a review of recent literature,” Silicon. 2(1), 1–6 (2010).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Summers, C. J.

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[CrossRef]

Talebi Fard, P.

Talebi Fard, S.

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[CrossRef] [PubMed]

V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, Photonics North 2013, 89150Z (2013).

Talebifard, S.

S. Talebifard, V. Donzella, S. A. Schmidt, D. M. Ratner, R. J. Bojko, and L. Chrostowski, “Sensitivity analysis of thin waveguide SOI ring resonators for sensing applications,” IEEE Photonics Conference (IPC) pp.616–617, (2013).

Teo, S.

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

Thorhauge, M.

Thyagarajan, K.

Vachon, M.

Wang, X.

X. Wang, S. Grist, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
[CrossRef] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics 6(10), 821–828 (2013).
[PubMed]

X. Wang, Y. Wang, J. Flueckiger, R Bojko, A. Liu, A. Reid, J. Pond, N.A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” submitted.

Wang, Y.

X. Wang, Y. Wang, J. Flueckiger, R Bojko, A. Liu, A. Reid, J. Pond, N.A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” submitted.

Wangüemert-Pérez, J. G.

Weissman, Z.

White, T. P.

Wu, Y.

Xiao, S.

Xu, D. X.

Xu, D.-X.

Yang, Y.

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

Yi, Z.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).

Yu, J.

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[CrossRef]

Zhang, D.

Zhang, Y.

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

Zhe, X.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).

Zhou, Z.

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[CrossRef]

Front. Optoelectron. China (1)

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[CrossRef]

IEEE J Lightw. Tech. (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J Lightw. Tech. 15(8), 1263–1276 (1997).

IEEE J. Lightw. Tech. (1)

B. Jalali and S. Fathpour, “Silicon photonics,” IEEE J. Lightw. Tech. 24(12), 4600–4615 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett. 20(1), 33–35 (2008).
[CrossRef]

IEEE Solid-State Circ. Mag. (1)

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).

J Biophotonics (1)

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics 6(10), 821–828 (2013).
[PubMed]

J. Lightw. Tech. (1)

D. Ortega, J. M. Aldariz, J. M. Arnold, and J. S. Aitchison, “Analysis of “quasi-modes” in periodic segmented waveguides,” J. Lightw. Tech. 17(2), 369–375 (1999).
[CrossRef]

J. Vac. Sci. Technol. B (1)

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[CrossRef]

Opt. Express (7)

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[CrossRef] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
[CrossRef] [PubMed]

J. H. E. Kim, L. Chrostowski, E. Bisaillon, and D. V. Plant, “DBR, Sub-wavelength grating, and photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD,” Opt. Express 15(16), 10330–10339 (2007).
[CrossRef] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D. X. Xu, S. Janz, A. Densmore, T. J. Hall, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18(15), 16146–16155 (2010).
[CrossRef] [PubMed]

X. Wang, S. Grist, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
[CrossRef] [PubMed]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[CrossRef] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[CrossRef] [PubMed]

Opt. Lett. (6)

Photonics North (1)

V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, Photonics North 2013, 89150Z (2013).

Silicon. (1)

R. Soref, “Silicon photonics: a review of recent literature,” Silicon. 2(1), 1–6 (2010).
[CrossRef]

Other (10)

S. Talebifard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” SPIE OPTO 862909 (2014).

V. Donzella, S. Talebi Fard, and L. Chrostowski, “Modelling of asymmetric slot racetracks for improved bio-sensors performance,” Numerical Simulation of Optoelectronic Devices (NUSOD), 2013 13th International Conference on pp.25,26 (2013).

L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University Press, 2014)

S. Selvaraja, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, D. Vermeulen, G. Sterckx, G.Winroth, P. Verheyen, G. Lepage, W. Bogaerts, R. Baets, J. Van Campenhout and P. Absil, “Advanced 300-mm waferscale patterning for silicon photonics devices with record low loss and phase errors,” 17th Opto-Electronics and Communications Conference-OECC, PDP2–2, (2012).

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).

S. Talebifard, V. Donzella, S. A. Schmidt, D. M. Ratner, R. J. Bojko, and L. Chrostowski, “Sensitivity analysis of thin waveguide SOI ring resonators for sensing applications,” IEEE Photonics Conference (IPC) pp.616–617, (2013).

X. Wang, Y. Wang, J. Flueckiger, R Bojko, A. Liu, A. Reid, J. Pond, N.A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” submitted.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” Optical Fiber Communication Conference, pp. Th2A.37 (2014).
[CrossRef]

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Fully-etched grating coupler with low back reflection,” SPIE Photonics North 89150U (2013).

www.lumerical.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) 3D view of a straight SWG waveguide without top cladding on SOI chip and (b) top view of propagating Re{Ey} field. (b-d) are plots from 3D FDTD simulations of the fundamental TE mode field propagation in the SWG waveguide, (e-f) are plots of the fundamental TE mode profile on the transverse waveguide cross-section using MODE combined with the equivalent refractive index method [21]. SWG electromagnetic field intensity evolution (along one SWG period) on transverse cross-section: (c) field profile in one ‘empty space’ between two silicon blocks, (d) field profile in a Si block. (e) SWG mode profile, using the equivalent refractive index method and (f) mode in a strip Si waveguide with the same SWG transverse dimensions. SWG shows increased evanescent field penetration into the media (c-e) with respect to traditional waveguides (f). Waveguide cross-section is h = 220nm x w = 500nm, SWG Π = 250 nm.

Fig. 2
Fig. 2

MODE simulations to evaluate mode penetration distance of the field for SWG waveguides versus SWG duty cycle (continuous lines). Dotted lines are used as comparison with penetration distance of standard SOI waveguides with same transverse cross-section. SWG period is 250 nm, light wavelength is 1550 nm.

Fig. 3
Fig. 3

Fabricated SWG SEM pictures (SWG period is 250 nm, waveguide width is 500 nm): (a) taper detail and (b-c) bend details at low and high magnification, respectively.

Fig. 4
Fig. 4

(a) Simulated mode mismatch loss (MODE simulation) between input and output taper modes (TE and TM) vs. SWG δ, The SWG period is 250 nm. Top cladding is air, λ = 1550nm. (b) 3D FDTD simulation of total taper loss vs. SWG δ for SWG to strip waveguide transition and different modes (TE mode is in blue while TM is in red). For TE mode it is shown the effect of having a longer taper (dotted blue line). Inset shows taper top view, not at scale. (c) 3D FDTD simulation of straight SWG waveguide loss, for a 30 μm long (continuous line) and for 60 μm long waveguide (dotted lines). TE mode related curves are blue while TM curves are red. In the 3 graphs, waveguide cross-section is h = 220nm x w = 500nm (TE) or w = 600nm (TM).

Fig. 5
Fig. 5

(a) Normalized received spectra of TM cascaded SWG/strip waveguide tapers for increasing taper number, inset reporting the measured total loss as a function of number of tapers, with linear fit to extract the single taper loss. The spectra are normalized with respect to the optical link on chip without any taper. Dotted black lines represent the loss values extracted from the fit for 2,12 and 24 cascaded tapers. (b) Taper loss from experimental and simulated results, TE and TM mode, vs. SWG duty cycle.

Fig. 6
Fig. 6

(a) Comparison of cross-over length, Lc, dependence on wavelength of input light for SOI strip (continuous lines) and SWG waveguides (dotted lines). SWG duty cycle is 0.8. (b) Lc for SWG directional coupler with different δ, TE mode, g = 200nm, waveguide parameters are kept constant. If not specified, waveguide cross-section is h. 220nm x w. 500nm, Π = 250nm and coupling gap, g = 200nm. Top cladding is air.

Fig. 7
Fig. 7

(a) SEM picture of a directional coupler, with some parameters highlighted. (b) Comparison of Lc dependence on input light wavelength for TE SOI SWG directional couplers. Continuous lines indicate Lc-meas values calculated from measurements using Eqs. (2)-(3) and dotted ones stand for simulated results. The power of the two output ports is normalized with respect to the total output power. In (a) and (b) SWG is h.220nm x w.500nm, Π = 250nm, g = 200nm. Top cladding is air, and duty cycles indicated in figure. (c) Experimental evaluation of coupler Lc-meas vs. gap compared with Lc simulation results. In (b) and (c) simulated results were generated using MODE, equivalent refractive index method and theoretical evaluation [32]. For TM light, w = 600nm.

Fig. 8
Fig. 8

(a) SEM picture of 10 μm SWG bend on SOI chip, with δ = 0.8 and Π = 250nm, and (b) top view of Re{E} propagating in this kind of bend calculated via 3D FDTD for λ = 1550 nm, TE mode. (c) Mode mismatch loss calculated by equivalent refractive index method and MODE, versus bend radius for two different SWG duty cycles. In all the simulations waveguide cross section is h. 220 nm x w. 500 nm and SWG Π = 250 nm.

Fig. 9
Fig. 9

(a) Bend loss versus radius of experimental results (continuous lines, with mean value and error bars) compared with simulations (dotted lines), different duty cycles are shown with different colors. (b) Spectra of two similar optical links, one without any bend and one with two SWG bends cascaded (left axis), and spectra of the two SWG bends normalized with respect to the GC optical link (right axis); R = 10 μm and δ = 0.8. In all cases waveguide cross section is h. 220 nm x w. 500 nm and SWG Π = 250 nm.

Tables (1)

Tables Icon

Table 1 SWG geometries and optical properties

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n e q = δ Δ n
κ m e a s = P c o u p l e d P i n

Metrics