Abstract

Fluorescence microscopy plays a vital role in modern biological research and clinical diagnosis. Here, we report an imaging approach, termed pattern-illuminated Fourier ptychography (FP), for fluorescence imaging beyond the diffraction limit of the employed optics. This approach iteratively recovers a high-resolution fluorescence image from many pattern-illuminated low-resolution intensity measurements. The recovery process starts with one low-resolution measurement as the initial guess. This initial guess is then sequentially updated by other measurements, both in the spatial and Fourier domains. In the spatial domain, we use the pattern-illuminated low-resolution images as intensity constraints for the sample estimate. In the Fourier domain, we use the incoherent optical-transfer-function of the objective lens as the object support constraint for the solution. The sequential updating process is then repeated until the sample estimate converges, typically for 5-20 times. Different from the conventional structured illumination microscopy, any unknown pattern can be used for sample illumination in the reported framework. In particular, we are able to recover both the high-resolution sample image and the unknown illumination pattern at the same time. As a demonstration, we improved the resolution of a conventional fluorescence microscope beyond the diffraction limit of the employed optics. The reported approach may provide an alternative solution for structure illumination microscopy and find applications in wide-field, high-resolution fluorescence imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2010).
  2. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [CrossRef] [PubMed]
  3. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [CrossRef] [PubMed]
  4. M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [CrossRef] [PubMed]
  5. R. Heintzmann and M. G. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3(7), 362–364 (2009).
    [CrossRef]
  6. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
    [CrossRef] [PubMed]
  7. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
    [CrossRef]
  8. A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43(1), 261–282 (2013).
    [CrossRef]
  9. J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
  10. P. T. C. So, H.-S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A 18(11), 2833–2845 (2001).
    [CrossRef] [PubMed]
  11. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13(16), 6073–6078 (2005).
    [CrossRef] [PubMed]
  12. A. Gur, D. Fixler, V. Micó, J. Garcia, and Z. Zalevsky, “Linear optics based nanoscopy,” Opt. Express 18(21), 22222–22231 (2010).
    [CrossRef] [PubMed]
  13. C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Opt. Lett. 30(24), 3350–3352 (2005).
    [CrossRef] [PubMed]
  14. C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express 14(16), 7198–7209 (2006).
    [CrossRef] [PubMed]
  15. C. Ventalon, R. Heintzmann, and J. Mertz, “Dynamic speckle illumination microscopy with wavelet prefiltering,” Opt. Lett. 32(11), 1417–1419 (2007).
    [CrossRef] [PubMed]
  16. Z. R. Hoffman and C. A. DiMarzio, “Structured illumination microscopy using random intensity incoherent reflectance,” J. Biomed. Opt. 18(6), 061216 (2013).
    [CrossRef] [PubMed]
  17. M. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [CrossRef] [PubMed]
  18. J. G. Walker and K. I. Hopcraft, “A diffuser-based optical sectioning fluorescence microscope,” Meas. Sci. Technol. 24(12), 125404 (2013).
    [CrossRef]
  19. D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
  20. K. Wicker, “Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space,” Opt. Express 21(21), 24692–24701 (2013).
    [CrossRef] [PubMed]
  21. R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
    [CrossRef] [PubMed]
  22. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [CrossRef]
  23. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
    [CrossRef] [PubMed]
  24. S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
    [CrossRef] [PubMed]
  25. S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
    [CrossRef] [PubMed]
  26. G. Zheng, “Breakthroughs in photonics 2013: Fourier ptychographic imaging,” Photonics Journal, IEEE 6, 1–7 (2014).
    [CrossRef]
  27. G. Zheng, X. Ou, R. Horstmeyer, J. Chung, and C. Yang, “Fourier ptychographic microscopy: a gigapixel superscope for biomedicine,” Optics and Photonics News 25(4April Issue), 26–33 (2014).
    [CrossRef]
  28. A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
    [CrossRef] [PubMed]
  29. R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).
  30. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3(1), 27–29 (1978).
    [CrossRef] [PubMed]
  31. L. Taylor, “The phase retrieval problem,” Antennas and Propagation, IEEE Transactions on 29(2), 386–391 (1981).
    [CrossRef]
  32. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
    [CrossRef] [PubMed]
  33. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21(5), 215829 (1982).
    [CrossRef]
  34. B. H. Dean and C. W. Bowers, “Diversity selection for phase-diverse phase retrieval,” J. Opt. Soc. Am. A 20(8), 1490–1504 (2003).
    [CrossRef] [PubMed]
  35. C.-H. Lu, C. Barsi, M. O. Williams, J. N. Kutz, and J. W. Fleischer, “Phase retrieval using nonlinear diversity,” Appl. Opt. 52(10), D92–D96 (2013).
    [CrossRef] [PubMed]
  36. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93(2), 023903 (2004).
    [CrossRef] [PubMed]
  37. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16(10), 7264–7278 (2008).
    [CrossRef] [PubMed]
  38. X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
    [CrossRef] [PubMed]
  39. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
    [CrossRef] [PubMed]
  40. F. Hüe, J. M. Rodenburg, A. M. Maiden, and P. A. Midgley, “Extended ptychography in the transmission electron microscope: Possibilities and limitations,” Ultramicroscopy 111(8), 1117–1123 (2011).
    [CrossRef] [PubMed]
  41. Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21(26), 32400–32410 (2013).
    [CrossRef] [PubMed]
  42. S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
    [CrossRef] [PubMed]

2014 (7)

G. Zheng, “Breakthroughs in photonics 2013: Fourier ptychographic imaging,” Photonics Journal, IEEE 6, 1–7 (2014).
[CrossRef]

G. Zheng, X. Ou, R. Horstmeyer, J. Chung, and C. Yang, “Fourier ptychographic microscopy: a gigapixel superscope for biomedicine,” Optics and Photonics News 25(4April Issue), 26–33 (2014).
[CrossRef]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[CrossRef] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[CrossRef] [PubMed]

S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[CrossRef] [PubMed]

S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
[CrossRef] [PubMed]

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[CrossRef] [PubMed]

2013 (11)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[CrossRef]

A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43(1), 261–282 (2013).
[CrossRef]

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).

Z. R. Hoffman and C. A. DiMarzio, “Structured illumination microscopy using random intensity incoherent reflectance,” J. Biomed. Opt. 18(6), 061216 (2013).
[CrossRef] [PubMed]

J. G. Walker and K. I. Hopcraft, “A diffuser-based optical sectioning fluorescence microscope,” Meas. Sci. Technol. 24(12), 125404 (2013).
[CrossRef]

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

C.-H. Lu, C. Barsi, M. O. Williams, J. N. Kutz, and J. W. Fleischer, “Phase retrieval using nonlinear diversity,” Appl. Opt. 52(10), D92–D96 (2013).
[CrossRef] [PubMed]

K. Wicker, “Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space,” Opt. Express 21(21), 24692–24701 (2013).
[CrossRef] [PubMed]

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[CrossRef] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[CrossRef] [PubMed]

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21(26), 32400–32410 (2013).
[CrossRef] [PubMed]

2012 (1)

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[CrossRef]

2011 (1)

F. Hüe, J. M. Rodenburg, A. M. Maiden, and P. A. Midgley, “Extended ptychography in the transmission electron microscope: Possibilities and limitations,” Ultramicroscopy 111(8), 1117–1123 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (3)

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[CrossRef] [PubMed]

R. Heintzmann and M. G. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3(7), 362–364 (2009).
[CrossRef]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

2008 (2)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16(10), 7264–7278 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (3)

2004 (1)

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93(2), 023903 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

2000 (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

1997 (1)

1982 (2)

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
[CrossRef] [PubMed]

R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21(5), 215829 (1982).
[CrossRef]

1981 (1)

L. Taylor, “The phase retrieval problem,” Antennas and Propagation, IEEE Transactions on 29(2), 386–391 (1981).
[CrossRef]

1978 (1)

1972 (1)

R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Agard, D. A.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Allain, M.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[CrossRef]

Ao, Z.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[CrossRef] [PubMed]

Ayuk, R.

Barsi, C.

Belkebir, K.

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[CrossRef] [PubMed]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[CrossRef]

Bian, Z.

Bowers, C. W.

Bunk, O.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[CrossRef] [PubMed]

Cande, W. Z.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Carlton, P. M.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Choi, C.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).

Chung, J.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[CrossRef] [PubMed]

G. Zheng, X. Ou, R. Horstmeyer, J. Chung, and C. Yang, “Fourier ptychographic microscopy: a gigapixel superscope for biomedicine,” Optics and Photonics News 25(4April Issue), 26–33 (2014).
[CrossRef]

Cote, R.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[CrossRef] [PubMed]

Dan, D.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

Datar, R.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[CrossRef] [PubMed]

Dean, B. H.

Dierolf, M.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[CrossRef] [PubMed]

DiMarzio, C. A.

Z. R. Hoffman and C. A. DiMarzio, “Structured illumination microscopy using random intensity incoherent reflectance,” J. Biomed. Opt. 18(6), 061216 (2013).
[CrossRef] [PubMed]

Dong, C. Y.

Dong, S.

Faulkner, H. M. L.

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93(2), 023903 (2004).
[CrossRef] [PubMed]

Fienup, J. R.

Fixler, D.

Fleischer, J. W.

Garcia, J.

García, J.

Gerchberg, R.

R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Giovannini, H.

Girard, J.

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[CrossRef] [PubMed]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[CrossRef]

Golubovskaya, I. N.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Gonsalves, R. A.

R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21(5), 215829 (1982).
[CrossRef]

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Guizar-Sicairos, M.

Guo, K.

Gur, A.

Gustafsson, M. G.

R. Heintzmann and M. G. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3(7), 362–364 (2009).
[CrossRef]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

Heintzmann, R.

Hoffman, Z. R.

Z. R. Hoffman and C. A. DiMarzio, “Structured illumination microscopy using random intensity incoherent reflectance,” J. Biomed. Opt. 18(6), 061216 (2013).
[CrossRef] [PubMed]

Hopcraft, K. I.

J. G. Walker and K. I. Hopcraft, “A diffuser-based optical sectioning fluorescence microscope,” Meas. Sci. Technol. 24(12), 125404 (2013).
[CrossRef]

Horstmeyer, R.

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[CrossRef] [PubMed]

G. Zheng, X. Ou, R. Horstmeyer, J. Chung, and C. Yang, “Fourier ptychographic microscopy: a gigapixel superscope for biomedicine,” Optics and Photonics News 25(4April Issue), 26–33 (2014).
[CrossRef]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[CrossRef] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[CrossRef]

Hüe, F.

F. Hüe, J. M. Rodenburg, A. M. Maiden, and P. A. Midgley, “Extended ptychography in the transmission electron microscope: Possibilities and limitations,” Ultramicroscopy 111(8), 1117–1123 (2011).
[CrossRef] [PubMed]

Jang, J.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).

Jeong, K.-H.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).

Jost, A.

Juskaitis, R.

Keum, D.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).

Kner, P.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Kutz, J. N.

Kwon, H.-S.

Le Moal, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[CrossRef]

Lei, M.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

Lu, C.-H.

Maiden, A. M.

F. Hüe, J. M. Rodenburg, A. M. Maiden, and P. A. Midgley, “Extended ptychography in the transmission electron microscope: Possibilities and limitations,” Ultramicroscopy 111(8), 1117–1123 (2011).
[CrossRef] [PubMed]

Mangeat, T.

Menzel, A.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[CrossRef] [PubMed]

Mertz, J.

Micó, V.

Midgley, P. A.

F. Hüe, J. M. Rodenburg, A. M. Maiden, and P. A. Midgley, “Extended ptychography in the transmission electron microscope: Possibilities and limitations,” Ultramicroscopy 111(8), 1117–1123 (2011).
[CrossRef] [PubMed]

Min, J.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).

Mudry, E.

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[CrossRef] [PubMed]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[CrossRef]

Nanda, P.

Neil, M. A.

Nicoletti, C.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[CrossRef]

Ou, X.

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[CrossRef] [PubMed]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[CrossRef] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[CrossRef] [PubMed]

G. Zheng, X. Ou, R. Horstmeyer, J. Chung, and C. Yang, “Fourier ptychographic microscopy: a gigapixel superscope for biomedicine,” Optics and Photonics News 25(4April Issue), 26–33 (2014).
[CrossRef]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[CrossRef] [PubMed]

Pfeiffer, F.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[CrossRef] [PubMed]

Qi, Y.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

Rawal, S.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[CrossRef] [PubMed]

Rodenburg, J. M.

F. Hüe, J. M. Rodenburg, A. M. Maiden, and P. A. Midgley, “Extended ptychography in the transmission electron microscope: Possibilities and limitations,” Ultramicroscopy 111(8), 1117–1123 (2011).
[CrossRef] [PubMed]

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93(2), 023903 (2004).
[CrossRef] [PubMed]

Ryu, S.-W.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).

Sandeau, N.

Savatier, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[CrossRef]

Sedat, J. W.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Sentenac, A.

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[CrossRef] [PubMed]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[CrossRef]

Shao, L.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Shiradkar, R.

So, P. T. C.

Taylor, L.

L. Taylor, “The phase retrieval problem,” Antennas and Propagation, IEEE Transactions on 29(2), 386–391 (1981).
[CrossRef]

Thibault, P.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[CrossRef] [PubMed]

Ventalon, C.

Walker, J. G.

J. G. Walker and K. I. Hopcraft, “A diffuser-based optical sectioning fluorescence microscope,” Meas. Sci. Technol. 24(12), 125404 (2013).
[CrossRef]

Wang, C. J.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Wang, W.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

Wicker, K.

Williams, A.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[CrossRef] [PubMed]

Williams, M. O.

Wilson, T.

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Winterhalder, M.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

Xia, L.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

Xin, H.

Yan, S.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

Yang, C.

G. Zheng, X. Ou, R. Horstmeyer, J. Chung, and C. Yang, “Fourier ptychographic microscopy: a gigapixel superscope for biomedicine,” Optics and Photonics News 25(4April Issue), 26–33 (2014).
[CrossRef]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[CrossRef] [PubMed]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[CrossRef] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[CrossRef]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[CrossRef] [PubMed]

Yang, Y.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

Yao, B.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

Ye, J. C.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).

Zalevsky, Z.

Zheng, G.

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[CrossRef] [PubMed]

G. Zheng, “Breakthroughs in photonics 2013: Fourier ptychographic imaging,” Photonics Journal, IEEE 6, 1–7 (2014).
[CrossRef]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[CrossRef] [PubMed]

S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
[CrossRef] [PubMed]

S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[CrossRef] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[CrossRef] [PubMed]

G. Zheng, X. Ou, R. Horstmeyer, J. Chung, and C. Yang, “Fourier ptychographic microscopy: a gigapixel superscope for biomedicine,” Optics and Photonics News 25(4April Issue), 26–33 (2014).
[CrossRef]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[CrossRef] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[CrossRef]

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21(26), 32400–32410 (2013).
[CrossRef] [PubMed]

Zumbusch, A.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

Annu. Rev. Mater. Res. (1)

A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43(1), 261–282 (2013).
[CrossRef]

Antennas and Propagation, IEEE Transactions on (1)

L. Taylor, “The phase retrieval problem,” Antennas and Propagation, IEEE Transactions on 29(2), 386–391 (1981).
[CrossRef]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Biophys. J. (1)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

Z. R. Hoffman and C. A. DiMarzio, “Structured illumination microscopy using random intensity incoherent reflectance,” J. Biomed. Opt. 18(6), 061216 (2013).
[CrossRef] [PubMed]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[CrossRef] [PubMed]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Meas. Sci. Technol. (1)

J. G. Walker and K. I. Hopcraft, “A diffuser-based optical sectioning fluorescence microscope,” Meas. Sci. Technol. 24(12), 125404 (2013).
[CrossRef]

Nat. Methods (1)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Nat. Photonics (3)

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[CrossRef]

R. Heintzmann and M. G. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3(7), 362–364 (2009).
[CrossRef]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[CrossRef]

Opt. Eng. (1)

R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21(5), 215829 (1982).
[CrossRef]

Opt. Express (9)

J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13(16), 6073–6078 (2005).
[CrossRef] [PubMed]

K. Wicker, “Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space,” Opt. Express 21(21), 24692–24701 (2013).
[CrossRef] [PubMed]

C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express 14(16), 7198–7209 (2006).
[CrossRef] [PubMed]

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[CrossRef] [PubMed]

M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16(10), 7264–7278 (2008).
[CrossRef] [PubMed]

A. Gur, D. Fixler, V. Micó, J. Garcia, and Z. Zalevsky, “Linear optics based nanoscopy,” Opt. Express 18(21), 22222–22231 (2010).
[CrossRef] [PubMed]

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21(26), 32400–32410 (2013).
[CrossRef] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[CrossRef] [PubMed]

S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[CrossRef] [PubMed]

Opt. Lett. (6)

Optics and Photonics News (1)

G. Zheng, X. Ou, R. Horstmeyer, J. Chung, and C. Yang, “Fourier ptychographic microscopy: a gigapixel superscope for biomedicine,” Optics and Photonics News 25(4April Issue), 26–33 (2014).
[CrossRef]

Optik (Stuttg.) (1)

R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Photonics Journal, IEEE (1)

G. Zheng, “Breakthroughs in photonics 2013: Fourier ptychographic imaging,” Photonics Journal, IEEE 6, 1–7 (2014).
[CrossRef]

Phys. Rev. Lett. (1)

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93(2), 023903 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

Sci. Rep. (2)

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

Ultramicroscopy (2)

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009).
[CrossRef] [PubMed]

F. Hüe, J. M. Rodenburg, A. M. Maiden, and P. A. Midgley, “Extended ptychography in the transmission electron microscope: Possibilities and limitations,” Ultramicroscopy 111(8), 1117–1123 (2011).
[CrossRef] [PubMed]

Other (1)

J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Overview of the pattern-illuminated FP recovery scheme. Multiple pattern-illuminated low-resolution images In (n = 1,2,3…) are used to recover the high-resolution sample image Iobj. In the last low-resolution image In, the high-frequency illumination pattern is filtered out by the low-NA objective lens.

Fig. 2
Fig. 2

Flow chart of the pattern-illuminated FP algorithm.

Fig. 3
Fig. 3

Pattern-illuminated FP recovery using sinusoidal patterns. (a1) Simulated raw image without noise, and (a2) with 1% additive noise. (a3) The Fourier spectrum of (a1). FP recoveries using (b) 18 raw images, (c) 36 images, and (d) 54 images. We used 15 loops for the FP reconstructions. For the noise-free cases, the corresponding MSEs are 1.07%, 0.70%, and 0.44% for (b1)-(d1). For the cases with 1% noise, the corresponding MSEs are 1.65%, 1.30%, and 1.12% for (b2)-(d2). (e) The MSE is plotted as function of different noise levels. Different color lines correspond to different number of raw images.

Fig. 4
Fig. 4

Demonstration of resolution enhancement using a star image. (a1) Simulated diffraction-limited low-resolution image. (b1) Deconvolved image of (a1). The FP reconstructions using 36 (c1) and 54 (d1) raw images. (a2-d2) The Fourier spectrum of (a1-d1). We used 15 loops for the FP reconstructions and the corresponding MSEs are 0.64% and 0.35% for (c1) and (d1).

Fig. 5
Fig. 5

Effect of rotational error and background level with sinusoidal illumination patterns. The FP recovered images with (a1) 0%, (a2) 1%, and (a3) 10% rotation errors. The corresponding MSEs are 0.35%, 0.92%, and 1.07%. The FP recovered images with (b1) 0%, (b2) 10%, and (b3) 100% backgrounds. The corresponding MSEs are 0.35%, 0.68%, and 10.2%.

Fig. 6
Fig. 6

Pattern-illuminated FP recovery using unknown illumination patterns. (a) The unknown illumination pattern (random pattern) is translated into 169 different spatial positions. (b1) The simulated raw image. (b2) The Fourier spectrum of (b1). (c) The recovered illumination pattern. (d) The recovered high-resolution object image and its Fourier spectrum. We used 15 loops for the FP reconstructions. The MSE of (d1) is 0.4%.

Fig. 7
Fig. 7

Demonstration of resolution enhancement using a star image. (a1) Simulated diffraction-limited low-resolution image. (b1) Deconvolved image of (a1). (c) The FP reconstructions using by translating one unknown speckle pattern to 169 different spatial positions. We used 15 loops for the FP reconstructions and the MSE of (c1) is 0.32%.

Fig. 8
Fig. 8

Effect of positional error and background level with one translating unknown illumination pattern. The FP recovered images with (a1) 0%, (a2) 1%, and (a3) 10% positional errors. The corresponding MSEs are 0.32%, 0.41%, and 10.7%. The FP recovered images with (b1) 0%, (b2) 10%, and (b3) 100% backgrounds. The corresponding MSEs are 0.32%, 0.64%, and 10.2%.

Fig. 9
Fig. 9

Effect of additive noises with one translating unknown illumination pattern. (a1)-(a3) Raw images with 1%, 2%, and 10% additive Gaussian noise. (b1)-(b3) The corresponding FP reconstructions. The corresponding MSEs are 0.55%, 0.63%, and 1.57%.

Fig. 10
Fig. 10

Comparison between (a) random speckle pattern and (b) high-pass speckle pattern for sample illumination. The MSEs of (a3) and (b3) are 0.32% and 0.38%.

Fig. 11
Fig. 11

(a) Pattern-illuminated FP setup. A diffuser is placed at the epi-illuminated arm of the microscope platform. The excitation light from the objective lens forms a speckle pattern on the sample. The resulting fluorescence emission from sample is then collected by the objective lens and detected by the CCD camera. (b1)-(b4) 4 acquired raw images.

Fig. 12
Fig. 12

Experimental demonstration of the pattern-illuminated FP approach. (a1) Sample image acquired using the 10X objective with uniform illumination. (a2) Deconvolved image of (a1). (b1) Speckle-illuminated FP raw image. (b2) FP recovery using 49 raw images. (c1) Sample image acquired using a 40X high-NA objective. (a3), (b3), (c2) Intensity line traces of the highlighted features in (a1), (a2), (b2), and (c1). For (a1) and (c1), we averaged multiple frames to get a similar photon budget as (b2).

Fig. 13
Fig. 13

FP reconstructions using different number of raw images. We used 5-15 loops for the iterative recovery process. (a) 9-frame recovery. (b) 16-frame recovery. (c) 25-frame recovery. (d) 49-frame recovery. (a1)-(d1) The recovered object profiles. (a2)-(d2) The recovered unknown illumination patterns. (a3)-(d3) Intensity lines traces corresponding to the highlighted features in (a1)-(d1). The FP reconstruction converges with 25 raw images.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( I n ) = O T F ( I o b j P n ) ,
( I t n ) u p d a t e d = ( I t n ) + O T F ( ( I n ) O T F ( I t n ) )
I o b j u p d a t e d = I o b j + P n (max ( P n ) ) 2 ( I t n u p d a t e d I o b j P n )
P u n k n o w n u p d a t e d = P u n k n o w n + I o b j (max ( I o b j ) ) 2 ( I t n u p d a t e d I o b j P u n k n o w n ( x x n ) )

Metrics