Abstract

Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [CrossRef]
  2. http://www.sony.co.uk/hub/personal-3d-viewer .
  3. K. Aiki and S. Nakano, “Illumination optical device and virtual image display,” U. S. Patent 2010/0027289.
  4. H. Mukawa, “Head-mounted display,” U. S. Patent 2010/0046070.
  5. N. Owano, “Epson's 3-d glasses simulate 80-inch screen,” http://phys.org/news/2012-04-epson-d-glasses-simulate-inch.html .
  6. M. Takagi, T. Miyao, T. Totani, A. Komatsu, and T. Takeda, “Light guide plate and virtual image display apparatus having the same,” U. S. Patent 2012/0057253.
  7. P. Äyräs, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–664 (2009).
    [CrossRef]
  8. P. Saarikko, “Diffractive exit-pupil expander for spherical light guide virtual displays designed for near-distance viewing,” J. Opt. A, Pure Appl. Opt. 11(6), 065504 (2009).
    [CrossRef]
  9. T. Levola, “Simulation of planar lightguides in imaging applications using rigorous diffraction theory,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol. 40, No. 1, pp. 35–37.
    [CrossRef]
  10. P. Saarikko, “Diffractive exit-pupil expander with a large field of view,” Proc. SPIE 7001, 700105 (2008).
    [CrossRef]
  11. B. Achtner, “HMD device with imaging optics comprising an aspheric surface,” U. S. Patent 6903875.
  12. M. Kaschke, “Technology introduction,” http://www.kaschke-medtec.de/vorlWS09.html .
  13. M. J. Heinrich and M. I. Olsson, “Wearable display device,” U. S. Patent D659741.
  14. B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
    [CrossRef]
  15. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [CrossRef] [PubMed]
  16. S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
    [CrossRef]
  17. H. Urey, “Diffractive exit-pupil expander for display applications,” Appl. Opt. 40(32), 5840–5851 (2001).
    [CrossRef] [PubMed]
  18. T. Levola, “Novel diffractive optical components for near to eye displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol. 37, No. 1, pp. 64–67.
    [CrossRef]
  19. T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
    [CrossRef]
  20. R. Shi, J. Liu, J. Xu, D. Liu, Y. Pan, J. Xie, and Y. Wang, “Designing and fabricating diffractive optical elements with a complex profile by interference,” Opt. Lett. 36(20), 4053–4055 (2011).
    [CrossRef] [PubMed]
  21. Y. Amitai, A. A. Friesem, and V. Weiss, “Holographic elements with high efficiency and low aberrations for helmet displays,” Appl. Opt. 28(16), 3405–3416 (1989).
    [CrossRef] [PubMed]
  22. Y. Amitai and J. W. Goodman, “Design of substrate-mode holographic interconnects with different recording and readout wavelengths,” Appl. Opt. 30(17), 2376–2381 (1991).
    [CrossRef] [PubMed]
  23. Q. Huang and H. J. Caulfield, “Waveguide holography and its applications,” Proc. SPIE 1461, 303–312 (1991).
    [CrossRef]
  24. M. M. Li, R. T. Chen, S. Tang, and D. Gerold, “Multiple diffraction of massive fanout optical interconnects based on multiplexed waveguide holograms,” Proc. SPIE 2153, 278–287 (1994).
    [CrossRef]
  25. Y. Amitai, S. Reinhorn, and A. A. Friesem, “Visor-display design based on planar holographic optics,” Appl. Opt. 34(8), 1352–1356 (1995).
    [CrossRef] [PubMed]
  26. M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35(9), 2499–2505 (1996).
    [CrossRef]
  27. J. A. Gilbert and Q. Huang, “Characterization, production and reconstruction of substrate guided wave holointerferograms,” Exp. Mech. 36(1), 71–77 (1996).
    [CrossRef]
  28. A. N. Putilin, Y. P. Borodin, and A. V. Chernopiatov, “Waveguide holograms in LCD illumination units,” Proc. SPIE 4511, 144–148 (2001).
    [CrossRef]
  29. A. Putilin and I. Gustomiasov, “Application of holographic elements in displays and planar illuminators,” Proc. SPIE 6637, 66370N (2007).
  30. C. Alex, “The application of holographic optical waveguide technology to Q-sight family of helmet mounted displays,” Proc. SPIE 7362, 73260H (2009).
  31. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol. 39, No. 1, pp. 89–92.
    [CrossRef]
  32. Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng. 50(9), 094001 (2011).
    [CrossRef]
  33. Y. Amitai and A. A. Friesem, “Design of holographic optical elements by using recursive techniques,” J. Opt. Soc. Am. A 5(5), 702–712 (1988).
    [CrossRef]
  34. Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in Society for Information Display (SID) International Symposium Digest (Society for Information Display, 2004), Vol. 35, No. 1, pp. 310–313.
    [CrossRef]
  35. Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2005), Vol. 36, No. 1, pp. 360–363.
    [CrossRef]
  36. http://www.lumus-optical.com .
  37. Optinvent, Clear-vu optics, http://www.optinvent.com/clear-vu-optics.php .
  38. Q. Wang, D. Cheng, Y. Wang, H. Hua, and G. Jin, “Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements,” Appl. Opt. 52(7), C88–C99 (2013).
    [CrossRef] [PubMed]

2013 (2)

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[CrossRef]

Q. Wang, D. Cheng, Y. Wang, H. Hua, and G. Jin, “Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements,” Appl. Opt. 52(7), C88–C99 (2013).
[CrossRef] [PubMed]

2011 (2)

R. Shi, J. Liu, J. Xu, D. Liu, Y. Pan, J. Xie, and Y. Wang, “Designing and fabricating diffractive optical elements with a complex profile by interference,” Opt. Lett. 36(20), 4053–4055 (2011).
[CrossRef] [PubMed]

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng. 50(9), 094001 (2011).
[CrossRef]

2009 (5)

C. Alex, “The application of holographic optical waveguide technology to Q-sight family of helmet mounted displays,” Proc. SPIE 7362, 73260H (2009).

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[CrossRef]

P. Äyräs, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–664 (2009).
[CrossRef]

P. Saarikko, “Diffractive exit-pupil expander for spherical light guide virtual displays designed for near-distance viewing,” J. Opt. A, Pure Appl. Opt. 11(6), 065504 (2009).
[CrossRef]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[CrossRef] [PubMed]

2008 (1)

P. Saarikko, “Diffractive exit-pupil expander with a large field of view,” Proc. SPIE 7001, 700105 (2008).
[CrossRef]

2007 (1)

A. Putilin and I. Gustomiasov, “Application of holographic elements in displays and planar illuminators,” Proc. SPIE 6637, 66370N (2007).

2006 (1)

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[CrossRef]

2003 (1)

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[CrossRef]

2001 (2)

A. N. Putilin, Y. P. Borodin, and A. V. Chernopiatov, “Waveguide holograms in LCD illumination units,” Proc. SPIE 4511, 144–148 (2001).
[CrossRef]

H. Urey, “Diffractive exit-pupil expander for display applications,” Appl. Opt. 40(32), 5840–5851 (2001).
[CrossRef] [PubMed]

1996 (2)

M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35(9), 2499–2505 (1996).
[CrossRef]

J. A. Gilbert and Q. Huang, “Characterization, production and reconstruction of substrate guided wave holointerferograms,” Exp. Mech. 36(1), 71–77 (1996).
[CrossRef]

1995 (1)

1994 (1)

M. M. Li, R. T. Chen, S. Tang, and D. Gerold, “Multiple diffraction of massive fanout optical interconnects based on multiplexed waveguide holograms,” Proc. SPIE 2153, 278–287 (1994).
[CrossRef]

1991 (2)

1989 (1)

1988 (1)

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[CrossRef]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[CrossRef]

Alex, C.

C. Alex, “The application of holographic optical waveguide technology to Q-sight family of helmet mounted displays,” Proc. SPIE 7362, 73260H (2009).

Amitai, Y.

Äyräs, P.

P. Äyräs, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–664 (2009).
[CrossRef]

Borodin, Y. P.

A. N. Putilin, Y. P. Borodin, and A. V. Chernopiatov, “Waveguide holograms in LCD illumination units,” Proc. SPIE 4511, 144–148 (2001).
[CrossRef]

Caulfield, H. J.

Q. Huang and H. J. Caulfield, “Waveguide holography and its applications,” Proc. SPIE 1461, 303–312 (1991).
[CrossRef]

Chen, R. T.

M. M. Li, R. T. Chen, S. Tang, and D. Gerold, “Multiple diffraction of massive fanout optical interconnects based on multiplexed waveguide holograms,” Proc. SPIE 2153, 278–287 (1994).
[CrossRef]

Cheng, D.

Chernopiatov, A. V.

A. N. Putilin, Y. P. Borodin, and A. V. Chernopiatov, “Waveguide holograms in LCD illumination units,” Proc. SPIE 4511, 144–148 (2001).
[CrossRef]

Drake, M. D.

M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35(9), 2499–2505 (1996).
[CrossRef]

Fiddy, M. A.

M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35(9), 2499–2505 (1996).
[CrossRef]

Friesem, A. A.

Furness, T. A.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[CrossRef]

Gerold, D.

M. M. Li, R. T. Chen, S. Tang, and D. Gerold, “Multiple diffraction of massive fanout optical interconnects based on multiplexed waveguide holograms,” Proc. SPIE 2153, 278–287 (1994).
[CrossRef]

Gilbert, J. A.

J. A. Gilbert and Q. Huang, “Characterization, production and reconstruction of substrate guided wave holointerferograms,” Exp. Mech. 36(1), 71–77 (1996).
[CrossRef]

Goodman, J. W.

Gustomiasov, I.

A. Putilin and I. Gustomiasov, “Application of holographic elements in displays and planar illuminators,” Proc. SPIE 6637, 66370N (2007).

Hua, H.

Huang, Q.

J. A. Gilbert and Q. Huang, “Characterization, production and reconstruction of substrate guided wave holointerferograms,” Exp. Mech. 36(1), 71–77 (1996).
[CrossRef]

Q. Huang and H. J. Caulfield, “Waveguide holography and its applications,” Proc. SPIE 1461, 303–312 (1991).
[CrossRef]

Jin, G.

Kang, M.

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng. 50(9), 094001 (2011).
[CrossRef]

Kelly, J. P.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[CrossRef]

Kress, B.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[CrossRef]

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[CrossRef]

Levola, T.

P. Äyräs, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–664 (2009).
[CrossRef]

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[CrossRef]

Li, M. M.

M. M. Li, R. T. Chen, S. Tang, and D. Gerold, “Multiple diffraction of massive fanout optical interconnects based on multiplexed waveguide holograms,” Proc. SPIE 2153, 278–287 (1994).
[CrossRef]

Li, W.

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng. 50(9), 094001 (2011).
[CrossRef]

Lidd, M. L.

M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35(9), 2499–2505 (1996).
[CrossRef]

Liu, D.

Liu, J.

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[CrossRef]

McQuaide, S. C.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[CrossRef]

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[CrossRef]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[CrossRef]

Pan, Y.

Putilin, A.

A. Putilin and I. Gustomiasov, “Application of holographic elements in displays and planar illuminators,” Proc. SPIE 6637, 66370N (2007).

Putilin, A. N.

A. N. Putilin, Y. P. Borodin, and A. V. Chernopiatov, “Waveguide holograms in LCD illumination units,” Proc. SPIE 4511, 144–148 (2001).
[CrossRef]

Reinhorn, S.

Saarikko, P.

P. Saarikko, “Diffractive exit-pupil expander for spherical light guide virtual displays designed for near-distance viewing,” J. Opt. A, Pure Appl. Opt. 11(6), 065504 (2009).
[CrossRef]

P. Äyräs, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–664 (2009).
[CrossRef]

P. Saarikko, “Diffractive exit-pupil expander with a large field of view,” Proc. SPIE 7001, 700105 (2008).
[CrossRef]

Schowengerdt, B. T.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[CrossRef]

Seibel, E. J.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[CrossRef]

Shi, R.

Starner, T.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[CrossRef]

Talha, M. M.

Tang, S.

M. M. Li, R. T. Chen, S. Tang, and D. Gerold, “Multiple diffraction of massive fanout optical interconnects based on multiplexed waveguide holograms,” Proc. SPIE 2153, 278–287 (1994).
[CrossRef]

Urey, H.

Wang, Q.

Wang, Y.

Weiss, V.

Xie, J.

Xu, J.

Yan, Z.

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng. 50(9), 094001 (2011).
[CrossRef]

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[CrossRef]

Zheng, Z.

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng. 50(9), 094001 (2011).
[CrossRef]

Zhou, Y.

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng. 50(9), 094001 (2011).
[CrossRef]

Appl. Opt. (6)

Displays (1)

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[CrossRef]

Exp. Mech. (1)

J. A. Gilbert and Q. Huang, “Characterization, production and reconstruction of substrate guided wave holointerferograms,” Exp. Mech. 36(1), 71–77 (1996).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

P. Saarikko, “Diffractive exit-pupil expander for spherical light guide virtual displays designed for near-distance viewing,” J. Opt. A, Pure Appl. Opt. 11(6), 065504 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (3)

P. Äyräs, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–664 (2009).
[CrossRef]

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[CrossRef]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[CrossRef]

Opt. Eng. (2)

M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35(9), 2499–2505 (1996).
[CrossRef]

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng. 50(9), 094001 (2011).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (7)

A. N. Putilin, Y. P. Borodin, and A. V. Chernopiatov, “Waveguide holograms in LCD illumination units,” Proc. SPIE 4511, 144–148 (2001).
[CrossRef]

A. Putilin and I. Gustomiasov, “Application of holographic elements in displays and planar illuminators,” Proc. SPIE 6637, 66370N (2007).

C. Alex, “The application of holographic optical waveguide technology to Q-sight family of helmet mounted displays,” Proc. SPIE 7362, 73260H (2009).

P. Saarikko, “Diffractive exit-pupil expander with a large field of view,” Proc. SPIE 7001, 700105 (2008).
[CrossRef]

Q. Huang and H. J. Caulfield, “Waveguide holography and its applications,” Proc. SPIE 1461, 303–312 (1991).
[CrossRef]

M. M. Li, R. T. Chen, S. Tang, and D. Gerold, “Multiple diffraction of massive fanout optical interconnects based on multiplexed waveguide holograms,” Proc. SPIE 2153, 278–287 (1994).
[CrossRef]

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[CrossRef]

Other (15)

T. Levola, “Simulation of planar lightguides in imaging applications using rigorous diffraction theory,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol. 40, No. 1, pp. 35–37.
[CrossRef]

T. Levola, “Novel diffractive optical components for near to eye displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol. 37, No. 1, pp. 64–67.
[CrossRef]

B. Achtner, “HMD device with imaging optics comprising an aspheric surface,” U. S. Patent 6903875.

M. Kaschke, “Technology introduction,” http://www.kaschke-medtec.de/vorlWS09.html .

M. J. Heinrich and M. I. Olsson, “Wearable display device,” U. S. Patent D659741.

http://www.sony.co.uk/hub/personal-3d-viewer .

K. Aiki and S. Nakano, “Illumination optical device and virtual image display,” U. S. Patent 2010/0027289.

H. Mukawa, “Head-mounted display,” U. S. Patent 2010/0046070.

N. Owano, “Epson's 3-d glasses simulate 80-inch screen,” http://phys.org/news/2012-04-epson-d-glasses-simulate-inch.html .

M. Takagi, T. Miyao, T. Totani, A. Komatsu, and T. Takeda, “Light guide plate and virtual image display apparatus having the same,” U. S. Patent 2012/0057253.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol. 39, No. 1, pp. 89–92.
[CrossRef]

Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in Society for Information Display (SID) International Symposium Digest (Society for Information Display, 2004), Vol. 35, No. 1, pp. 310–313.
[CrossRef]

Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2005), Vol. 36, No. 1, pp. 360–363.
[CrossRef]

http://www.lumus-optical.com .

Optinvent, Clear-vu optics, http://www.optinvent.com/clear-vu-optics.php .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

(a) Schematic diagram of a planar WGNED; (b) Photo taken through a planar waveguide.

Fig. 2
Fig. 2

Schematic side view of the waveguide near-eye display.

Fig. 3
Fig. 3

Three major stray light paths generated by (a) two reflections on the reflecting mirror; (b) and (c) unwanted reflection of the rays reflected by the front substrate and incident on the PRMA.

Fig. 4
Fig. 4

Relationship of the exit pupil of the projection optics and the entrance pupil of the waveguide.

Fig. 5
Fig. 5

The EPD is a function of the thickness of the waveguide.

Fig. 6
Fig. 6

The incident angle on the substrates.

Fig. 7
Fig. 7

Searching results of possible configurations with (a) the average and RMS value of the stray light over the regular light when Texd = 0; (b) the average and RMS value of the stray light over the regular light when Texd = d; (c) the average and RMS value of the stray light over the regular light when Texd is matched; (d) the P-V value of the stray light over the regular light when Texd = 0; (e) the P-V value of the stray light over the regular light when Texd = d; (f) the P-V value of the stray light over the regular light when Texd is matched.

Fig. 8
Fig. 8

The ray path layout and illuminance chart, (a) regular ray path; (b) illuminance chart of the regular ray path;(c) stray light path caused by same ray bundle as (a); (d) illuminance chart of the stray light path.

Fig. 9
Fig. 9

Proportion of the useful and stray light over the total power for the (a) FOV along the expansion direction; (b) entire FOVs of the WGNED system.

Fig. 10
Fig. 10

3-D layout of the waveguide with three bundles of rays from the center and marginal fields along the X-axis, (a) the exit pupil of the projection optics locates on the entrance of the waveguide; (b) the exit pupil of the projection optics locates on the exit pupil of the WGNED system.

Fig. 11
Fig. 11

Exit pupil of (a) the projection optics and (b) the WGNED in the XOY plane.

Fig. 12
Fig. 12

Exit pupil of (a) the projection optics and (b) the WGNED in the XOY plane.

Fig. 13
Fig. 13

Side view of the planar WGNED with a transmitted ray.

Fig. 14
Fig. 14

Optical layout of the freeform eyepiece in (a) sagittal plane, (b) three-dimensional view, (c) tangential plane.

Fig. 15
Fig. 15

Polychromatic MTF curves of the freeform eyepiece.

Fig. 16
Fig. 16

2-D layout of the ultra-thin WGNED system.

Fig. 17
Fig. 17

(a) Optical layout of the modified FFS design; (b) 3D model of the WGNED prototype.

Fig. 18
Fig. 18

The MTF field plot of FFS system (16lps/mm) in (a) tangential direction; (b) sagittal direction.

Fig. 19
Fig. 19

(a) The waveguide plate; (b) side view and (c) front view of WGNED Prototype.

Fig. 20
Fig. 20

(a) 1951 USAF resolution test chart; (b) photo taken through the waveguide.

Tables (2)

Tables Icon

Table 1 Top 5 optimal waveguide configurations

Tables Icon

Table 2 The solution with a smaller index

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

θ s1 ={ 3θ+ω'ω'0 180(3θ+ω')ω'>0
θ s2 =θ+ω'
Δθ={ 180-6θ-2ω'ω'0 6θ+2ω'180ω'>0
T exd =d× tanω' tanω
D exd =d×( 1 tanθ tanω')
D exd =2d× tan θ i +tan θ i tanω'tanθ 1+tanθtan θ i
D exp = d 2 ( m 1 ×tan(2θ+ω') m 2 ×tan(2θ-ω'))-2×ER F s ×tan(ω)
L exd = H 1 +1.5 H 2 = H 1 +1.5× d tanθ
ER F e =ER F s +( m 3 3)×d× tan ω x ' tan ω x

Metrics