Abstract

We present a theory of phonon-assisted photoluminescence from a semiconductor quantum dot (QD) whose electron and phonon subsystems are resonantly coupled via the polar electron–phonon interaction. We show that the resonance-induced renormalization of the QD energy spectrum, leading to the formation of the polaron-like states, can be performed exactly in terms of the arbitrarily degenerate states of electron–hole pairs and the phonon modes of equal energies. Using the model of QDs with finite potential barriers for electron and holes leads to new selection rules of interband optical transitions and the three-particle interaction describing simultaneous absorption and/or emission of a photon and a phonon. We also derive a simple expression for the differential cross section of the stationary, low-temperature photoluminescence, which allows the fundamental parameters of the polaron-like excitations to be readily extracted from the frequency-resolved experimental spectra. In particular, the energies of the excitations and the coherence relaxation rates of the optical transitions resulting in their generation and recombination are shown to be directly given by the positions and widths of the photoluminescence peaks. The developed theory complements the existing experimental techniques of studying the phonon-assisted photoluminescence from individual nanocrystals.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Yu, Q. Liang, Y. Jia, and J. Dong, “Phonon sidebands of photoluminescence in single wall carbon nanotubes,” J. Appl. Phys. 107, 024314 (2010).
    [CrossRef]
  2. S. Sohal, Y. Alivov, Z. Fan, and M. Holtz, “Role of phonons in the optical properties of magnetron sputtered ZnO studied by resonance Raman and photoluminescence,” J. Appl. Phys. 108, 053507 (2010).
    [CrossRef]
  3. S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B 81, 245303 (2010).
    [CrossRef]
  4. C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton–phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 261904 (2009).
    [CrossRef]
  5. S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon–assisted ultraviolet anti-stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett. 93, 201107 (2008).
    [CrossRef]
  6. T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006).
    [CrossRef]
  7. I. D. Rukhlenko and A. V. Fedorov, “Resonant photoluminescence of quantum dots: Dynamics of electronic subsystem,” Bull. Russ. Acad. Sci. 70, 126 (2006).
  8. V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov, G. A. Emelchenko, and F. Briones, “Photoluminescence and resonant Raman scattering from ZnO-opal structures,” J. Appl. Phys. 96, 1001–1006 (2004).
    [CrossRef]
  9. T. S. Kim, Y.-H. Kil, H. D. Yang, J.-H. Yang, W.-K. Hong, S. Kang, T. S. Jeong, and K.-H. Shim, “Growth and characterization of Si1−xGex QDs on Si/Si0.8Ge0.2 layer,” Electron. Mater. Lett. 8, 559–563 (2012).
    [CrossRef]
  10. E. S. F. Neto, S. W. da Silva, P. C. Morais, M. I. Vasilevskiy, M. A. P. da Silva, and N. O. Dantas, “Resonant Raman scattering in CdSx Se1−x nanocrystals: Effects of phonon confinement, composition, and elastic strain,” J. Raman Spectrosc. 42, 1660–1669 (2011).
    [CrossRef]
  11. K. Raulin, S. Turrell, B. Capoen, C. Kinowski, V. T. T. Tran, M. Bouazaoui, and O. Cristini, “Raman characterization of localized CdS nanostructures synthesized by UV irradiation in sol-gel silica matrices,” J. Ram. Spectrosc. 42, 1366–1372 (2011).
    [CrossRef]
  12. S. Dhara, A. K. Arora, S. Bera, and J. Ghatak, “Multiphonon probe in ZnS quantum dots,” J. Raman Spectrosc. 41, 1102–1105 (2010).
    [CrossRef]
  13. S. K. Gupta, R. Desai, P. K. Jha, S. Sahoo, and D. Kirin, “Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence,” J. Ram. Spectrosc. 41, 350–355 (2010).
  14. A. V. Baranov, T. S. Perova, R. A. Moore, S. Solosin, A. V. Fedorov, V. Yam, V. Thanh, and D. Bouchier, “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys. 95, 2857–2863 (2004).
    [CrossRef]
  15. K. Rezgui, S. Aloulou, J. Rihani, and M. Oueslati, “Competition between strain and confinement effects on the crystalline quality of InAs/GaAs (001) quantum dots probed by Raman spectroscopy,” J. Raman Spectrosc. 43, 1964–1968 (2012).
    [CrossRef]
  16. A. Cros, N. Garro, A. Cantarero, J. Coraux, H. Renevier, and B. Daudin, “Raman scattering as a tool for the evaluation of strain in GaN/AlN quantum dots: The effect of capping,” Phys. Rev. B 76, 165403 (2007).
    [CrossRef]
  17. A. Cros, N. Garro, J. M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, and B. Daudin, “Raman study and theoretical calculations of strain in GaN quantum dot multilayers,” Phys. Rev. B 73, 115313 (2006).
    [CrossRef]
  18. A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Thanh, and K. Berwick, “Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy,” Phys. Rev. B 73, 075322 (2006).
    [CrossRef]
  19. R. W. Meulenberg, T. Jennings, and G. F. Strouse, “Compressive and tensile stress in colloidal CdSe semiconductor quantum dots,” Phys. Rev. B 70, 235311 (2004).
    [CrossRef]
  20. S. Wageh, A. M. El-Nahas, A. A. Higazy, and M. A. M. Mahmoud, “Preparation and characterization of a novel system of CdS nanoparticles embedded in borophosphate glass matrix,” J. Alloys Comp. 555, 161–168 (2013).
    [CrossRef]
  21. G. H. Shih, C. G. Allen, and B. G. Potter, “Interfacial effects on the optical behavior of Ge:ITO and Ge:NO nanocomposite films,” Nanotechnol. 23, 075203 (2012).
    [CrossRef]
  22. N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, “Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis,” Chem. Mater. 24, 311–318 (2012).
    [CrossRef]
  23. A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003).
    [CrossRef]
  24. A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Y. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, Saint Petersburg, 2011).
  25. A. Rogach, ed., Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications (Springer, New York, 2008).
    [CrossRef]
  26. Y. Masumoto and T. Takagahara, eds., Semiconductor Quantum Dots: Physics, Spectroscopy and Applications (Springer, New York, 2002).
    [CrossRef]
  27. M. V. Mukhina, V. G. Maslov, A. V. Baranov, M. V. Artemyev, A. O. Orlova, and A. V. Fedorov, “Anisotropy of optical transitions in ordered ensemble of CdSe quantum rods,” Opt. Lett. 38, 3426–3428 (2013).
    [CrossRef] [PubMed]
  28. A. S. Baimuratov, V. K. Turkov, I. D. Rukhlenko, and A. V. Fedorov, “Shape-induced anisotropy of intraband luminescence from a semiconductor nanocrystal,” Opt. Lett. 37, 4645–4647 (2012).
    [CrossRef] [PubMed]
  29. A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
    [CrossRef] [PubMed]
  30. A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
    [CrossRef]
  31. V. Cesari, W. Langbein, and P. Borri, “Dephasing of excitons and multiexcitons in undoped and p-doped InAs/GaAs quantum dots-in-a-well,” Phys. Rev. B 82, 195314 (2010).
    [CrossRef]
  32. E. A. Muljarov and R. Zimmermann, “Exciton dephasing in quantum dots due to LO-phonon coupling: An exactly solvable model,” Phys. Rev. Lett. 98, 187401 (2007).
    [CrossRef] [PubMed]
  33. K. Kojima and A. Tomita, “Influence of pure dephasing by phonons on exciton–photon interfaces: Quantum microscopic theory,” Phys. Rev. B 73, 195312 (2006).
    [CrossRef]
  34. A. Vagov, V. M. Axt, T. Kuhn, W. Langbein, P. Borri, and U. Woggon, “Nonmonotonous temperature dependence of the initial decoherence in quantum dots,” Phys. Rev. B 70, 201305 (2004).
    [CrossRef]
  35. R. R. Cooney, S. L. Sewall, E. A. Dias, D. M. Sagar, K. E. H. Anderson, and P. Kambhampati, “Unified picture of electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 75, 245311 (2007).
    [CrossRef]
  36. B. Patton, W. Langbein, U. Woggon, L. Maingault, and H. Mariette, “Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots,” Phys. Rev. B 73, 235354 (2006).
    [CrossRef]
  37. M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton–phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006).
    [CrossRef]
  38. S. Sanguinetti, E. Poliani, M. Bonfanti, M. Guzzi, E. Grilli, M. Gurioli, and N. Koguchi, “Electron–phonon interaction in individual strain-free GaAs/Al0.3Ga0.7 As quantum dots,” Phys. Rev. B 73, 125342 (2006).
    [CrossRef]
  39. D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71, 235409 (2005).
    [CrossRef]
  40. I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15461–15482 (2011).
    [CrossRef]
  41. A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton–phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56, 7491 (1997).
    [CrossRef]
  42. A. V. Fedorov and A. V. Baranov, “Exciton–vibrational interaction of the frohlich type in quasi-zero-size systems,” J. Exp. Theor. Phys. 83, 610–618 (1996).
  43. T. Itoh, M. Nishijima, A. I. Ekimov, C. Gourdon, A. L. Efros, and M. Rosen, “Polaron and exciton–phonon complexes in CuCl nanocrystals,” Phys. Rev. Lett. 74, 1645 (1995).
    [CrossRef] [PubMed]
  44. I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253–264 (2006).
    [CrossRef]
  45. I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238–244 (2006).
    [CrossRef]
  46. B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
    [CrossRef]
  47. V. Preisler, R. Ferreira, S. Hameau, L. A. de Vaulchier, Y. Guldner, M. L. Sadowski, and A. Lemaitre, “Hole–LO-phonon interaction in InAs/GaAs quantum dots,” Phys. Rev. B 72, 115309 (2005).
    [CrossRef]
  48. J. Zhao, A. Kanno, M. Ikezawa, and Y. Masumoto, “Longitudinal optical phonons in the excited state of CuBr quantum dots,” Phys. Rev. B 68, 113305 (2003).
    [CrossRef]
  49. S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002).
    [CrossRef]
  50. A. V. Fedorov, A. V. Baranov, A. Itoh, and Y. Masumoto, “Renormalization of energy spectrum of quantum dots under vibrational resonance conditions,” Semiconductors 35, 1390–1397 (2001).
    [CrossRef]
  51. S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, “Strong electron–phonon coupling regime in quantum dots: Evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152 (1999).
    [CrossRef]
  52. S. Y. Kruchinin and A. V. Fedorov, “Renormalization of the energy spectrum of quantum dots under vibrational resonance conditions: Persistent hole burning spectroscopy,” Opt. Spectrosc. 100, 41–48 (2006).
    [CrossRef]
  53. R. P. Miranda, M. I. Vasilevskiy, and C. Trallero-Giner, “Nonperturbative approach to the calculation of multi-phonon Raman scattering in semiconductor quantum dots: Polaron effect,” Phys. Rev. B 74, 115317 (2006).
    [CrossRef]
  54. E. P. Pokatilov, S. N. Klimin, V. M. Fomin, J. T. Devreese, and F. W. Wise, “Multiphonon Raman scattering in semiconductor nanocrystals: Importance of nonadiabatic transitions,” Phys. Rev. B 65, 075316 (2002).
    [CrossRef]
  55. O. Verzelen, R. Ferreira, and G. Bastard, “Excitonic polarons in semiconductor quantum dots,” Phys. Rev. Lett. 88, 146803 (2002).
    [CrossRef] [PubMed]
  56. T. Stauber, R. Zimmermann, and H. Castella, “Electron–phonon interaction in quantum dots: A solvable model,” Phys. Rev. B 62, 7336 (2000).
    [CrossRef]
  57. V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin, “Photoluminescence of spherical quantum dots,” Phys. Rev. B 57, 2415–2425 (1998).
    [CrossRef]
  58. T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B 56, R4355 (1997).
    [CrossRef]
  59. I. B. Levinson and E. I. Rashba, “Threshold phenomena and bound states in the polaron problem,” Physics-Uspekhi 16, 892–912 (1974).
    [CrossRef]
  60. M. P. Chamberlain, C. Trallero-Giner, and M. Cardona, “Theory of one-phonon Raman scattering in semiconductor microcrystallites,” Phys. Rev. B 51, 1680–1693 (1995).
    [CrossRef]
  61. E. Evans and D. L. Mills, “Theory of inelastic scattering of slow electrons by long-wavelength surface optical phonons,” Phys. Rev. B 8, 4126–4139 (1973).
  62. N. Mori and T. Ando, “Electron–optical-phonon interaction in single and double heterostructures,” Phys. Rev. B 40, 6175–6188 (1989).
    [CrossRef]
  63. A. V. Fedorov and A. V. Baranov, “Relaxation of charge carriers in quantum dots with the involvement of plasmon–phonon modes,” Semiconductors 38, 1101–1109 (2004).
    [CrossRef]
  64. O. Madelung, M. Schultz, and H. Weiss, eds., “Semiconductors. Physics of Group IV Elements and III–V Compounds,” Landolt-Börnstein, New Series, Group III, vol. 17, Pt. a (Springer-Verlag, Berlin, 1982).
  65. K. Blum, Density Matrix Theory and Applications (Springer, Berlin, 2012).
    [CrossRef]

2013 (4)

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[CrossRef]

S. Wageh, A. M. El-Nahas, A. A. Higazy, and M. A. M. Mahmoud, “Preparation and characterization of a novel system of CdS nanoparticles embedded in borophosphate glass matrix,” J. Alloys Comp. 555, 161–168 (2013).
[CrossRef]

A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
[CrossRef] [PubMed]

M. V. Mukhina, V. G. Maslov, A. V. Baranov, M. V. Artemyev, A. O. Orlova, and A. V. Fedorov, “Anisotropy of optical transitions in ordered ensemble of CdSe quantum rods,” Opt. Lett. 38, 3426–3428 (2013).
[CrossRef] [PubMed]

2012 (5)

A. S. Baimuratov, V. K. Turkov, I. D. Rukhlenko, and A. V. Fedorov, “Shape-induced anisotropy of intraband luminescence from a semiconductor nanocrystal,” Opt. Lett. 37, 4645–4647 (2012).
[CrossRef] [PubMed]

G. H. Shih, C. G. Allen, and B. G. Potter, “Interfacial effects on the optical behavior of Ge:ITO and Ge:NO nanocomposite films,” Nanotechnol. 23, 075203 (2012).
[CrossRef]

N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, “Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis,” Chem. Mater. 24, 311–318 (2012).
[CrossRef]

T. S. Kim, Y.-H. Kil, H. D. Yang, J.-H. Yang, W.-K. Hong, S. Kang, T. S. Jeong, and K.-H. Shim, “Growth and characterization of Si1−xGex QDs on Si/Si0.8Ge0.2 layer,” Electron. Mater. Lett. 8, 559–563 (2012).
[CrossRef]

K. Rezgui, S. Aloulou, J. Rihani, and M. Oueslati, “Competition between strain and confinement effects on the crystalline quality of InAs/GaAs (001) quantum dots probed by Raman spectroscopy,” J. Raman Spectrosc. 43, 1964–1968 (2012).
[CrossRef]

2011 (3)

E. S. F. Neto, S. W. da Silva, P. C. Morais, M. I. Vasilevskiy, M. A. P. da Silva, and N. O. Dantas, “Resonant Raman scattering in CdSx Se1−x nanocrystals: Effects of phonon confinement, composition, and elastic strain,” J. Raman Spectrosc. 42, 1660–1669 (2011).
[CrossRef]

K. Raulin, S. Turrell, B. Capoen, C. Kinowski, V. T. T. Tran, M. Bouazaoui, and O. Cristini, “Raman characterization of localized CdS nanostructures synthesized by UV irradiation in sol-gel silica matrices,” J. Ram. Spectrosc. 42, 1366–1372 (2011).
[CrossRef]

I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15461–15482 (2011).
[CrossRef]

2010 (6)

V. Cesari, W. Langbein, and P. Borri, “Dephasing of excitons and multiexcitons in undoped and p-doped InAs/GaAs quantum dots-in-a-well,” Phys. Rev. B 82, 195314 (2010).
[CrossRef]

S. Dhara, A. K. Arora, S. Bera, and J. Ghatak, “Multiphonon probe in ZnS quantum dots,” J. Raman Spectrosc. 41, 1102–1105 (2010).
[CrossRef]

S. K. Gupta, R. Desai, P. K. Jha, S. Sahoo, and D. Kirin, “Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence,” J. Ram. Spectrosc. 41, 350–355 (2010).

G. Yu, Q. Liang, Y. Jia, and J. Dong, “Phonon sidebands of photoluminescence in single wall carbon nanotubes,” J. Appl. Phys. 107, 024314 (2010).
[CrossRef]

S. Sohal, Y. Alivov, Z. Fan, and M. Holtz, “Role of phonons in the optical properties of magnetron sputtered ZnO studied by resonance Raman and photoluminescence,” J. Appl. Phys. 108, 053507 (2010).
[CrossRef]

S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B 81, 245303 (2010).
[CrossRef]

2009 (1)

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton–phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 261904 (2009).
[CrossRef]

2008 (1)

S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon–assisted ultraviolet anti-stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett. 93, 201107 (2008).
[CrossRef]

2007 (3)

A. Cros, N. Garro, A. Cantarero, J. Coraux, H. Renevier, and B. Daudin, “Raman scattering as a tool for the evaluation of strain in GaN/AlN quantum dots: The effect of capping,” Phys. Rev. B 76, 165403 (2007).
[CrossRef]

E. A. Muljarov and R. Zimmermann, “Exciton dephasing in quantum dots due to LO-phonon coupling: An exactly solvable model,” Phys. Rev. Lett. 98, 187401 (2007).
[CrossRef] [PubMed]

R. R. Cooney, S. L. Sewall, E. A. Dias, D. M. Sagar, K. E. H. Anderson, and P. Kambhampati, “Unified picture of electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 75, 245311 (2007).
[CrossRef]

2006 (13)

B. Patton, W. Langbein, U. Woggon, L. Maingault, and H. Mariette, “Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots,” Phys. Rev. B 73, 235354 (2006).
[CrossRef]

M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton–phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006).
[CrossRef]

S. Sanguinetti, E. Poliani, M. Bonfanti, M. Guzzi, E. Grilli, M. Gurioli, and N. Koguchi, “Electron–phonon interaction in individual strain-free GaAs/Al0.3Ga0.7 As quantum dots,” Phys. Rev. B 73, 125342 (2006).
[CrossRef]

K. Kojima and A. Tomita, “Influence of pure dephasing by phonons on exciton–photon interfaces: Quantum microscopic theory,” Phys. Rev. B 73, 195312 (2006).
[CrossRef]

I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253–264 (2006).
[CrossRef]

I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238–244 (2006).
[CrossRef]

B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
[CrossRef]

S. Y. Kruchinin and A. V. Fedorov, “Renormalization of the energy spectrum of quantum dots under vibrational resonance conditions: Persistent hole burning spectroscopy,” Opt. Spectrosc. 100, 41–48 (2006).
[CrossRef]

R. P. Miranda, M. I. Vasilevskiy, and C. Trallero-Giner, “Nonperturbative approach to the calculation of multi-phonon Raman scattering in semiconductor quantum dots: Polaron effect,” Phys. Rev. B 74, 115317 (2006).
[CrossRef]

A. Cros, N. Garro, J. M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, and B. Daudin, “Raman study and theoretical calculations of strain in GaN quantum dot multilayers,” Phys. Rev. B 73, 115313 (2006).
[CrossRef]

A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Thanh, and K. Berwick, “Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy,” Phys. Rev. B 73, 075322 (2006).
[CrossRef]

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006).
[CrossRef]

I. D. Rukhlenko and A. V. Fedorov, “Resonant photoluminescence of quantum dots: Dynamics of electronic subsystem,” Bull. Russ. Acad. Sci. 70, 126 (2006).

2005 (2)

V. Preisler, R. Ferreira, S. Hameau, L. A. de Vaulchier, Y. Guldner, M. L. Sadowski, and A. Lemaitre, “Hole–LO-phonon interaction in InAs/GaAs quantum dots,” Phys. Rev. B 72, 115309 (2005).
[CrossRef]

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71, 235409 (2005).
[CrossRef]

2004 (5)

A. Vagov, V. M. Axt, T. Kuhn, W. Langbein, P. Borri, and U. Woggon, “Nonmonotonous temperature dependence of the initial decoherence in quantum dots,” Phys. Rev. B 70, 201305 (2004).
[CrossRef]

A. V. Fedorov and A. V. Baranov, “Relaxation of charge carriers in quantum dots with the involvement of plasmon–phonon modes,” Semiconductors 38, 1101–1109 (2004).
[CrossRef]

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov, G. A. Emelchenko, and F. Briones, “Photoluminescence and resonant Raman scattering from ZnO-opal structures,” J. Appl. Phys. 96, 1001–1006 (2004).
[CrossRef]

R. W. Meulenberg, T. Jennings, and G. F. Strouse, “Compressive and tensile stress in colloidal CdSe semiconductor quantum dots,” Phys. Rev. B 70, 235311 (2004).
[CrossRef]

A. V. Baranov, T. S. Perova, R. A. Moore, S. Solosin, A. V. Fedorov, V. Yam, V. Thanh, and D. Bouchier, “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys. 95, 2857–2863 (2004).
[CrossRef]

2003 (2)

A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003).
[CrossRef]

J. Zhao, A. Kanno, M. Ikezawa, and Y. Masumoto, “Longitudinal optical phonons in the excited state of CuBr quantum dots,” Phys. Rev. B 68, 113305 (2003).
[CrossRef]

2002 (3)

S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002).
[CrossRef]

E. P. Pokatilov, S. N. Klimin, V. M. Fomin, J. T. Devreese, and F. W. Wise, “Multiphonon Raman scattering in semiconductor nanocrystals: Importance of nonadiabatic transitions,” Phys. Rev. B 65, 075316 (2002).
[CrossRef]

O. Verzelen, R. Ferreira, and G. Bastard, “Excitonic polarons in semiconductor quantum dots,” Phys. Rev. Lett. 88, 146803 (2002).
[CrossRef] [PubMed]

2001 (1)

A. V. Fedorov, A. V. Baranov, A. Itoh, and Y. Masumoto, “Renormalization of energy spectrum of quantum dots under vibrational resonance conditions,” Semiconductors 35, 1390–1397 (2001).
[CrossRef]

2000 (1)

T. Stauber, R. Zimmermann, and H. Castella, “Electron–phonon interaction in quantum dots: A solvable model,” Phys. Rev. B 62, 7336 (2000).
[CrossRef]

1999 (1)

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, “Strong electron–phonon coupling regime in quantum dots: Evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152 (1999).
[CrossRef]

1998 (1)

V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin, “Photoluminescence of spherical quantum dots,” Phys. Rev. B 57, 2415–2425 (1998).
[CrossRef]

1997 (2)

T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B 56, R4355 (1997).
[CrossRef]

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton–phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56, 7491 (1997).
[CrossRef]

1996 (1)

A. V. Fedorov and A. V. Baranov, “Exciton–vibrational interaction of the frohlich type in quasi-zero-size systems,” J. Exp. Theor. Phys. 83, 610–618 (1996).

1995 (2)

T. Itoh, M. Nishijima, A. I. Ekimov, C. Gourdon, A. L. Efros, and M. Rosen, “Polaron and exciton–phonon complexes in CuCl nanocrystals,” Phys. Rev. Lett. 74, 1645 (1995).
[CrossRef] [PubMed]

M. P. Chamberlain, C. Trallero-Giner, and M. Cardona, “Theory of one-phonon Raman scattering in semiconductor microcrystallites,” Phys. Rev. B 51, 1680–1693 (1995).
[CrossRef]

1989 (1)

N. Mori and T. Ando, “Electron–optical-phonon interaction in single and double heterostructures,” Phys. Rev. B 40, 6175–6188 (1989).
[CrossRef]

1974 (1)

I. B. Levinson and E. I. Rashba, “Threshold phenomena and bound states in the polaron problem,” Physics-Uspekhi 16, 892–912 (1974).
[CrossRef]

1973 (1)

E. Evans and D. L. Mills, “Theory of inelastic scattering of slow electrons by long-wavelength surface optical phonons,” Phys. Rev. B 8, 4126–4139 (1973).

Ahn, C. H.

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton–phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 261904 (2009).
[CrossRef]

Alivov, Y.

S. Sohal, Y. Alivov, Z. Fan, and M. Holtz, “Role of phonons in the optical properties of magnetron sputtered ZnO studied by resonance Raman and photoluminescence,” J. Appl. Phys. 108, 053507 (2010).
[CrossRef]

Allen, C. G.

G. H. Shih, C. G. Allen, and B. G. Potter, “Interfacial effects on the optical behavior of Ge:ITO and Ge:NO nanocomposite films,” Nanotechnol. 23, 075203 (2012).
[CrossRef]

Aloulou, S.

K. Rezgui, S. Aloulou, J. Rihani, and M. Oueslati, “Competition between strain and confinement effects on the crystalline quality of InAs/GaAs (001) quantum dots probed by Raman spectroscopy,” J. Raman Spectrosc. 43, 1964–1968 (2012).
[CrossRef]

Anderson, K. E. H.

R. R. Cooney, S. L. Sewall, E. A. Dias, D. M. Sagar, K. E. H. Anderson, and P. Kambhampati, “Unified picture of electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 75, 245311 (2007).
[CrossRef]

Ando, T.

N. Mori and T. Ando, “Electron–optical-phonon interaction in single and double heterostructures,” Phys. Rev. B 40, 6175–6188 (1989).
[CrossRef]

Anni, M.

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71, 235409 (2005).
[CrossRef]

Arif, R. A.

S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon–assisted ultraviolet anti-stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett. 93, 201107 (2008).
[CrossRef]

Arora, A. K.

S. Dhara, A. K. Arora, S. Bera, and J. Ghatak, “Multiphonon probe in ZnS quantum dots,” J. Raman Spectrosc. 41, 1102–1105 (2010).
[CrossRef]

Artemyev, M. V.

Axt, V. M.

A. Vagov, V. M. Axt, T. Kuhn, W. Langbein, P. Borri, and U. Woggon, “Nonmonotonous temperature dependence of the initial decoherence in quantum dots,” Phys. Rev. B 70, 201305 (2004).
[CrossRef]

Baimuratov, A. S.

Bakin, A.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006).
[CrossRef]

Balaban, S. N.

V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin, “Photoluminescence of spherical quantum dots,” Phys. Rev. B 57, 2415–2425 (1998).
[CrossRef]

Baranov, A. V.

M. V. Mukhina, V. G. Maslov, A. V. Baranov, M. V. Artemyev, A. O. Orlova, and A. V. Fedorov, “Anisotropy of optical transitions in ordered ensemble of CdSe quantum rods,” Opt. Lett. 38, 3426–3428 (2013).
[CrossRef] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[CrossRef]

S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B 81, 245303 (2010).
[CrossRef]

A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Thanh, and K. Berwick, “Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy,” Phys. Rev. B 73, 075322 (2006).
[CrossRef]

A. V. Baranov, T. S. Perova, R. A. Moore, S. Solosin, A. V. Fedorov, V. Yam, V. Thanh, and D. Bouchier, “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys. 95, 2857–2863 (2004).
[CrossRef]

A. V. Fedorov and A. V. Baranov, “Relaxation of charge carriers in quantum dots with the involvement of plasmon–phonon modes,” Semiconductors 38, 1101–1109 (2004).
[CrossRef]

A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003).
[CrossRef]

A. V. Fedorov, A. V. Baranov, A. Itoh, and Y. Masumoto, “Renormalization of energy spectrum of quantum dots under vibrational resonance conditions,” Semiconductors 35, 1390–1397 (2001).
[CrossRef]

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton–phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56, 7491 (1997).
[CrossRef]

A. V. Fedorov and A. V. Baranov, “Exciton–vibrational interaction of the frohlich type in quasi-zero-size systems,” J. Exp. Theor. Phys. 83, 610–618 (1996).

A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Y. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, Saint Petersburg, 2011).

Bastard, G.

S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002).
[CrossRef]

O. Verzelen, R. Ferreira, and G. Bastard, “Excitonic polarons in semiconductor quantum dots,” Phys. Rev. Lett. 88, 146803 (2002).
[CrossRef] [PubMed]

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, “Strong electron–phonon coupling regime in quantum dots: Evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152 (1999).
[CrossRef]

Baymuratov, A. S.

I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15461–15482 (2011).
[CrossRef]

Bekeny, C.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006).
[CrossRef]

Bera, S.

S. Dhara, A. K. Arora, S. Bera, and J. Ghatak, “Multiphonon probe in ZnS quantum dots,” J. Raman Spectrosc. 41, 1102–1105 (2010).
[CrossRef]

Berwick, K.

S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B 81, 245303 (2010).
[CrossRef]

A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Thanh, and K. Berwick, “Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy,” Phys. Rev. B 73, 075322 (2006).
[CrossRef]

Biermann, A.

N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, “Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis,” Chem. Mater. 24, 311–318 (2012).
[CrossRef]

Blum, K.

K. Blum, Density Matrix Theory and Applications (Springer, Berlin, 2012).
[CrossRef]

Bonfanti, M.

S. Sanguinetti, E. Poliani, M. Bonfanti, M. Guzzi, E. Grilli, M. Gurioli, and N. Koguchi, “Electron–phonon interaction in individual strain-free GaAs/Al0.3Ga0.7 As quantum dots,” Phys. Rev. B 73, 125342 (2006).
[CrossRef]

Borner, S.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006).
[CrossRef]

Borri, P.

V. Cesari, W. Langbein, and P. Borri, “Dephasing of excitons and multiexcitons in undoped and p-doped InAs/GaAs quantum dots-in-a-well,” Phys. Rev. B 82, 195314 (2010).
[CrossRef]

A. Vagov, V. M. Axt, T. Kuhn, W. Langbein, P. Borri, and U. Woggon, “Nonmonotonous temperature dependence of the initial decoherence in quantum dots,” Phys. Rev. B 70, 201305 (2004).
[CrossRef]

Bouazaoui, M.

K. Raulin, S. Turrell, B. Capoen, C. Kinowski, V. T. T. Tran, M. Bouazaoui, and O. Cristini, “Raman characterization of localized CdS nanostructures synthesized by UV irradiation in sol-gel silica matrices,” J. Ram. Spectrosc. 42, 1366–1372 (2011).
[CrossRef]

Bouchier, D.

A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Thanh, and K. Berwick, “Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy,” Phys. Rev. B 73, 075322 (2006).
[CrossRef]

A. V. Baranov, T. S. Perova, R. A. Moore, S. Solosin, A. V. Fedorov, V. Yam, V. Thanh, and D. Bouchier, “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys. 95, 2857–2863 (2004).
[CrossRef]

Briones, F.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov, G. A. Emelchenko, and F. Briones, “Photoluminescence and resonant Raman scattering from ZnO-opal structures,” J. Appl. Phys. 96, 1001–1006 (2004).
[CrossRef]

Cantarero, A.

A. Cros, N. Garro, A. Cantarero, J. Coraux, H. Renevier, and B. Daudin, “Raman scattering as a tool for the evaluation of strain in GaN/AlN quantum dots: The effect of capping,” Phys. Rev. B 76, 165403 (2007).
[CrossRef]

A. Cros, N. Garro, J. M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, and B. Daudin, “Raman study and theoretical calculations of strain in GaN quantum dot multilayers,” Phys. Rev. B 73, 115313 (2006).
[CrossRef]

Capoen, B.

K. Raulin, S. Turrell, B. Capoen, C. Kinowski, V. T. T. Tran, M. Bouazaoui, and O. Cristini, “Raman characterization of localized CdS nanostructures synthesized by UV irradiation in sol-gel silica matrices,” J. Ram. Spectrosc. 42, 1366–1372 (2011).
[CrossRef]

Cardona, M.

M. P. Chamberlain, C. Trallero-Giner, and M. Cardona, “Theory of one-phonon Raman scattering in semiconductor microcrystallites,” Phys. Rev. B 51, 1680–1693 (1995).
[CrossRef]

Carpenter, B. A.

B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
[CrossRef]

Castella, H.

T. Stauber, R. Zimmermann, and H. Castella, “Electron–phonon interaction in quantum dots: A solvable model,” Phys. Rev. B 62, 7336 (2000).
[CrossRef]

Cesari, V.

V. Cesari, W. Langbein, and P. Borri, “Dephasing of excitons and multiexcitons in undoped and p-doped InAs/GaAs quantum dots-in-a-well,” Phys. Rev. B 82, 195314 (2010).
[CrossRef]

Chamberlain, M. P.

M. P. Chamberlain, C. Trallero-Giner, and M. Cardona, “Theory of one-phonon Raman scattering in semiconductor microcrystallites,” Phys. Rev. B 51, 1680–1693 (1995).
[CrossRef]

Cho, H. K.

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton–phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 261904 (2009).
[CrossRef]

Cingolani, R.

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71, 235409 (2005).
[CrossRef]

Cockburn, J. W.

B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
[CrossRef]

Cooney, R. R.

R. R. Cooney, S. L. Sewall, E. A. Dias, D. M. Sagar, K. E. H. Anderson, and P. Kambhampati, “Unified picture of electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 75, 245311 (2007).
[CrossRef]

Coraux, J.

A. Cros, N. Garro, A. Cantarero, J. Coraux, H. Renevier, and B. Daudin, “Raman scattering as a tool for the evaluation of strain in GaN/AlN quantum dots: The effect of capping,” Phys. Rev. B 76, 165403 (2007).
[CrossRef]

Cretí, A.

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71, 235409 (2005).
[CrossRef]

Cristini, O.

K. Raulin, S. Turrell, B. Capoen, C. Kinowski, V. T. T. Tran, M. Bouazaoui, and O. Cristini, “Raman characterization of localized CdS nanostructures synthesized by UV irradiation in sol-gel silica matrices,” J. Ram. Spectrosc. 42, 1366–1372 (2011).
[CrossRef]

Cros, A.

A. Cros, N. Garro, A. Cantarero, J. Coraux, H. Renevier, and B. Daudin, “Raman scattering as a tool for the evaluation of strain in GaN/AlN quantum dots: The effect of capping,” Phys. Rev. B 76, 165403 (2007).
[CrossRef]

A. Cros, N. Garro, J. M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, and B. Daudin, “Raman study and theoretical calculations of strain in GaN quantum dot multilayers,” Phys. Rev. B 73, 115313 (2006).
[CrossRef]

da Silva, M. A. P.

E. S. F. Neto, S. W. da Silva, P. C. Morais, M. I. Vasilevskiy, M. A. P. da Silva, and N. O. Dantas, “Resonant Raman scattering in CdSx Se1−x nanocrystals: Effects of phonon confinement, composition, and elastic strain,” J. Raman Spectrosc. 42, 1660–1669 (2011).
[CrossRef]

da Silva, S. W.

E. S. F. Neto, S. W. da Silva, P. C. Morais, M. I. Vasilevskiy, M. A. P. da Silva, and N. O. Dantas, “Resonant Raman scattering in CdSx Se1−x nanocrystals: Effects of phonon confinement, composition, and elastic strain,” J. Raman Spectrosc. 42, 1660–1669 (2011).
[CrossRef]

Dantas, N. O.

E. S. F. Neto, S. W. da Silva, P. C. Morais, M. I. Vasilevskiy, M. A. P. da Silva, and N. O. Dantas, “Resonant Raman scattering in CdSx Se1−x nanocrystals: Effects of phonon confinement, composition, and elastic strain,” J. Raman Spectrosc. 42, 1660–1669 (2011).
[CrossRef]

Daudin, B.

A. Cros, N. Garro, A. Cantarero, J. Coraux, H. Renevier, and B. Daudin, “Raman scattering as a tool for the evaluation of strain in GaN/AlN quantum dots: The effect of capping,” Phys. Rev. B 76, 165403 (2007).
[CrossRef]

A. Cros, N. Garro, J. M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, and B. Daudin, “Raman study and theoretical calculations of strain in GaN quantum dot multilayers,” Phys. Rev. B 73, 115313 (2006).
[CrossRef]

de Vaulchier, L. A.

V. Preisler, R. Ferreira, S. Hameau, L. A. de Vaulchier, Y. Guldner, M. L. Sadowski, and A. Lemaitre, “Hole–LO-phonon interaction in InAs/GaAs quantum dots,” Phys. Rev. B 72, 115309 (2005).
[CrossRef]

Deleporte, E.

S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002).
[CrossRef]

Desai, R.

S. K. Gupta, R. Desai, P. K. Jha, S. Sahoo, and D. Kirin, “Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence,” J. Ram. Spectrosc. 41, 350–355 (2010).

Devreese, J. T.

E. P. Pokatilov, S. N. Klimin, V. M. Fomin, J. T. Devreese, and F. W. Wise, “Multiphonon Raman scattering in semiconductor nanocrystals: Importance of nonadiabatic transitions,” Phys. Rev. B 65, 075316 (2002).
[CrossRef]

V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin, “Photoluminescence of spherical quantum dots,” Phys. Rev. B 57, 2415–2425 (1998).
[CrossRef]

Dhara, S.

S. Dhara, A. K. Arora, S. Bera, and J. Ghatak, “Multiphonon probe in ZnS quantum dots,” J. Raman Spectrosc. 41, 1102–1105 (2010).
[CrossRef]

Dias, E. A.

R. R. Cooney, S. L. Sewall, E. A. Dias, D. M. Sagar, K. E. H. Anderson, and P. Kambhampati, “Unified picture of electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 75, 245311 (2007).
[CrossRef]

Ding, Y. J.

S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon–assisted ultraviolet anti-stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett. 93, 201107 (2008).
[CrossRef]

Donegan, J. F.

A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003).
[CrossRef]

Dong, J.

G. Yu, Q. Liang, Y. Jia, and J. Dong, “Phonon sidebands of photoluminescence in single wall carbon nanotubes,” J. Appl. Phys. 107, 024314 (2010).
[CrossRef]

Efros, A. L.

T. Itoh, M. Nishijima, A. I. Ekimov, C. Gourdon, A. L. Efros, and M. Rosen, “Polaron and exciton–phonon complexes in CuCl nanocrystals,” Phys. Rev. Lett. 74, 1645 (1995).
[CrossRef] [PubMed]

Ekimov, A. I.

T. Itoh, M. Nishijima, A. I. Ekimov, C. Gourdon, A. L. Efros, and M. Rosen, “Polaron and exciton–phonon complexes in CuCl nanocrystals,” Phys. Rev. Lett. 74, 1645 (1995).
[CrossRef] [PubMed]

El-Nahas, A. M.

S. Wageh, A. M. El-Nahas, A. A. Higazy, and M. A. M. Mahmoud, “Preparation and characterization of a novel system of CdS nanoparticles embedded in borophosphate glass matrix,” J. Alloys Comp. 555, 161–168 (2013).
[CrossRef]

Emelchenko, G. A.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov, G. A. Emelchenko, and F. Briones, “Photoluminescence and resonant Raman scattering from ZnO-opal structures,” J. Appl. Phys. 96, 1001–1006 (2004).
[CrossRef]

Evans, E.

E. Evans and D. L. Mills, “Theory of inelastic scattering of slow electrons by long-wavelength surface optical phonons,” Phys. Rev. B 8, 4126–4139 (1973).

Fan, Z.

S. Sohal, Y. Alivov, Z. Fan, and M. Holtz, “Role of phonons in the optical properties of magnetron sputtered ZnO studied by resonance Raman and photoluminescence,” J. Appl. Phys. 108, 053507 (2010).
[CrossRef]

Fedorov, A. V.

M. V. Mukhina, V. G. Maslov, A. V. Baranov, M. V. Artemyev, A. O. Orlova, and A. V. Fedorov, “Anisotropy of optical transitions in ordered ensemble of CdSe quantum rods,” Opt. Lett. 38, 3426–3428 (2013).
[CrossRef] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[CrossRef]

A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
[CrossRef] [PubMed]

A. S. Baimuratov, V. K. Turkov, I. D. Rukhlenko, and A. V. Fedorov, “Shape-induced anisotropy of intraband luminescence from a semiconductor nanocrystal,” Opt. Lett. 37, 4645–4647 (2012).
[CrossRef] [PubMed]

I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15461–15482 (2011).
[CrossRef]

S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B 81, 245303 (2010).
[CrossRef]

A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Thanh, and K. Berwick, “Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy,” Phys. Rev. B 73, 075322 (2006).
[CrossRef]

I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238–244 (2006).
[CrossRef]

S. Y. Kruchinin and A. V. Fedorov, “Renormalization of the energy spectrum of quantum dots under vibrational resonance conditions: Persistent hole burning spectroscopy,” Opt. Spectrosc. 100, 41–48 (2006).
[CrossRef]

I. D. Rukhlenko and A. V. Fedorov, “Resonant photoluminescence of quantum dots: Dynamics of electronic subsystem,” Bull. Russ. Acad. Sci. 70, 126 (2006).

I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253–264 (2006).
[CrossRef]

A. V. Fedorov and A. V. Baranov, “Relaxation of charge carriers in quantum dots with the involvement of plasmon–phonon modes,” Semiconductors 38, 1101–1109 (2004).
[CrossRef]

A. V. Baranov, T. S. Perova, R. A. Moore, S. Solosin, A. V. Fedorov, V. Yam, V. Thanh, and D. Bouchier, “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys. 95, 2857–2863 (2004).
[CrossRef]

A. V. Fedorov, A. V. Baranov, A. Itoh, and Y. Masumoto, “Renormalization of energy spectrum of quantum dots under vibrational resonance conditions,” Semiconductors 35, 1390–1397 (2001).
[CrossRef]

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton–phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56, 7491 (1997).
[CrossRef]

A. V. Fedorov and A. V. Baranov, “Exciton–vibrational interaction of the frohlich type in quasi-zero-size systems,” J. Exp. Theor. Phys. 83, 610–618 (1996).

A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Y. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, Saint Petersburg, 2011).

Ferreira, R.

V. Preisler, R. Ferreira, S. Hameau, L. A. de Vaulchier, Y. Guldner, M. L. Sadowski, and A. Lemaitre, “Hole–LO-phonon interaction in InAs/GaAs quantum dots,” Phys. Rev. B 72, 115309 (2005).
[CrossRef]

O. Verzelen, R. Ferreira, and G. Bastard, “Excitonic polarons in semiconductor quantum dots,” Phys. Rev. Lett. 88, 146803 (2002).
[CrossRef] [PubMed]

S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002).
[CrossRef]

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, “Strong electron–phonon coupling regime in quantum dots: Evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152 (1999).
[CrossRef]

Fomin, V. M.

E. P. Pokatilov, S. N. Klimin, V. M. Fomin, J. T. Devreese, and F. W. Wise, “Multiphonon Raman scattering in semiconductor nanocrystals: Importance of nonadiabatic transitions,” Phys. Rev. B 65, 075316 (2002).
[CrossRef]

V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin, “Photoluminescence of spherical quantum dots,” Phys. Rev. B 57, 2415–2425 (1998).
[CrossRef]

Gafsi, H.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006).
[CrossRef]

García-Cristóbal, A.

A. Cros, N. Garro, J. M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, and B. Daudin, “Raman study and theoretical calculations of strain in GaN quantum dot multilayers,” Phys. Rev. B 73, 115313 (2006).
[CrossRef]

Garro, N.

A. Cros, N. Garro, A. Cantarero, J. Coraux, H. Renevier, and B. Daudin, “Raman scattering as a tool for the evaluation of strain in GaN/AlN quantum dots: The effect of capping,” Phys. Rev. B 76, 165403 (2007).
[CrossRef]

A. Cros, N. Garro, J. M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, and B. Daudin, “Raman study and theoretical calculations of strain in GaN quantum dot multilayers,” Phys. Rev. B 73, 115313 (2006).
[CrossRef]

Gerard, J. M.

S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002).
[CrossRef]

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, “Strong electron–phonon coupling regime in quantum dots: Evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152 (1999).
[CrossRef]

Ghatak, J.

S. Dhara, A. K. Arora, S. Bera, and J. Ghatak, “Multiphonon probe in ZnS quantum dots,” J. Raman Spectrosc. 41, 1102–1105 (2010).
[CrossRef]

Gladilin, V. N.

V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin, “Photoluminescence of spherical quantum dots,” Phys. Rev. B 57, 2415–2425 (1998).
[CrossRef]

Gogneau, N.

A. Cros, N. Garro, J. M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, and B. Daudin, “Raman study and theoretical calculations of strain in GaN quantum dot multilayers,” Phys. Rev. B 73, 115313 (2006).
[CrossRef]

Gomes, R.

N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, “Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis,” Chem. Mater. 24, 311–318 (2012).
[CrossRef]

Gourdon, C.

T. Itoh, M. Nishijima, A. I. Ekimov, C. Gourdon, A. L. Efros, and M. Rosen, “Polaron and exciton–phonon complexes in CuCl nanocrystals,” Phys. Rev. Lett. 74, 1645 (1995).
[CrossRef] [PubMed]

Graham, M. W.

M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton–phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006).
[CrossRef]

Grilli, E.

S. Sanguinetti, E. Poliani, M. Bonfanti, M. Guzzi, E. Grilli, M. Gurioli, and N. Koguchi, “Electron–phonon interaction in individual strain-free GaAs/Al0.3Ga0.7 As quantum dots,” Phys. Rev. B 73, 125342 (2006).
[CrossRef]

Guldner, Y.

V. Preisler, R. Ferreira, S. Hameau, L. A. de Vaulchier, Y. Guldner, M. L. Sadowski, and A. Lemaitre, “Hole–LO-phonon interaction in InAs/GaAs quantum dots,” Phys. Rev. B 72, 115309 (2005).
[CrossRef]

S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002).
[CrossRef]

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, “Strong electron–phonon coupling regime in quantum dots: Evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152 (1999).
[CrossRef]

Gupta, S. K.

S. K. Gupta, R. Desai, P. K. Jha, S. Sahoo, and D. Kirin, “Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence,” J. Ram. Spectrosc. 41, 350–355 (2010).

Gurioli, M.

S. Sanguinetti, E. Poliani, M. Bonfanti, M. Guzzi, E. Grilli, M. Gurioli, and N. Koguchi, “Electron–phonon interaction in individual strain-free GaAs/Al0.3Ga0.7 As quantum dots,” Phys. Rev. B 73, 125342 (2006).
[CrossRef]

Guzzi, M.

S. Sanguinetti, E. Poliani, M. Bonfanti, M. Guzzi, E. Grilli, M. Gurioli, and N. Koguchi, “Electron–phonon interaction in individual strain-free GaAs/Al0.3Ga0.7 As quantum dots,” Phys. Rev. B 73, 125342 (2006).
[CrossRef]

Hameau, S.

V. Preisler, R. Ferreira, S. Hameau, L. A. de Vaulchier, Y. Guldner, M. L. Sadowski, and A. Lemaitre, “Hole–LO-phonon interaction in InAs/GaAs quantum dots,” Phys. Rev. B 72, 115309 (2005).
[CrossRef]

S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002).
[CrossRef]

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, “Strong electron–phonon coupling regime in quantum dots: Evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152 (1999).
[CrossRef]

Hens, Z.

N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, “Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis,” Chem. Mater. 24, 311–318 (2012).
[CrossRef]

Higazy, A. A.

S. Wageh, A. M. El-Nahas, A. A. Higazy, and M. A. M. Mahmoud, “Preparation and characterization of a novel system of CdS nanoparticles embedded in borophosphate glass matrix,” J. Alloys Comp. 555, 161–168 (2013).
[CrossRef]

Holtz, M.

S. Sohal, Y. Alivov, Z. Fan, and M. Holtz, “Role of phonons in the optical properties of magnetron sputtered ZnO studied by resonance Raman and photoluminescence,” J. Appl. Phys. 108, 053507 (2010).
[CrossRef]

Hong, W.-K.

T. S. Kim, Y.-H. Kil, H. D. Yang, J.-H. Yang, W.-K. Hong, S. Kang, T. S. Jeong, and K.-H. Shim, “Growth and characterization of Si1−xGex QDs on Si/Si0.8Ge0.2 layer,” Electron. Mater. Lett. 8, 559–563 (2012).
[CrossRef]

Hopkinson, M.

B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
[CrossRef]

Ikezawa, M.

J. Zhao, A. Kanno, M. Ikezawa, and Y. Masumoto, “Longitudinal optical phonons in the excited state of CuBr quantum dots,” Phys. Rev. B 68, 113305 (2003).
[CrossRef]

Inoshita, T.

T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B 56, R4355 (1997).
[CrossRef]

Inoue, K.

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton–phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56, 7491 (1997).
[CrossRef]

Isaia, J. N.

S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002).
[CrossRef]

Itoh, A.

A. V. Fedorov, A. V. Baranov, A. Itoh, and Y. Masumoto, “Renormalization of energy spectrum of quantum dots under vibrational resonance conditions,” Semiconductors 35, 1390–1397 (2001).
[CrossRef]

Itoh, T.

T. Itoh, M. Nishijima, A. I. Ekimov, C. Gourdon, A. L. Efros, and M. Rosen, “Polaron and exciton–phonon complexes in CuCl nanocrystals,” Phys. Rev. Lett. 74, 1645 (1995).
[CrossRef] [PubMed]

Jamil, M.

S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon–assisted ultraviolet anti-stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett. 93, 201107 (2008).
[CrossRef]

Jennings, T.

R. W. Meulenberg, T. Jennings, and G. F. Strouse, “Compressive and tensile stress in colloidal CdSe semiconductor quantum dots,” Phys. Rev. B 70, 235311 (2004).
[CrossRef]

Jeong, T. S.

T. S. Kim, Y.-H. Kil, H. D. Yang, J.-H. Yang, W.-K. Hong, S. Kang, T. S. Jeong, and K.-H. Shim, “Growth and characterization of Si1−xGex QDs on Si/Si0.8Ge0.2 layer,” Electron. Mater. Lett. 8, 559–563 (2012).
[CrossRef]

Jha, P. K.

S. K. Gupta, R. Desai, P. K. Jha, S. Sahoo, and D. Kirin, “Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence,” J. Ram. Spectrosc. 41, 350–355 (2010).

Jia, Y.

G. Yu, Q. Liang, Y. Jia, and J. Dong, “Phonon sidebands of photoluminescence in single wall carbon nanotubes,” J. Appl. Phys. 107, 024314 (2010).
[CrossRef]

Kambhampati, P.

R. R. Cooney, S. L. Sewall, E. A. Dias, D. M. Sagar, K. E. H. Anderson, and P. Kambhampati, “Unified picture of electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 75, 245311 (2007).
[CrossRef]

Kang, S.

T. S. Kim, Y.-H. Kil, H. D. Yang, J.-H. Yang, W.-K. Hong, S. Kang, T. S. Jeong, and K.-H. Shim, “Growth and characterization of Si1−xGex QDs on Si/Si0.8Ge0.2 layer,” Electron. Mater. Lett. 8, 559–563 (2012).
[CrossRef]

Kanno, A.

J. Zhao, A. Kanno, M. Ikezawa, and Y. Masumoto, “Longitudinal optical phonons in the excited state of CuBr quantum dots,” Phys. Rev. B 68, 113305 (2003).
[CrossRef]

Khurgin, J. B.

S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon–assisted ultraviolet anti-stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett. 93, 201107 (2008).
[CrossRef]

Kil, Y.-H.

T. S. Kim, Y.-H. Kil, H. D. Yang, J.-H. Yang, W.-K. Hong, S. Kang, T. S. Jeong, and K.-H. Shim, “Growth and characterization of Si1−xGex QDs on Si/Si0.8Ge0.2 layer,” Electron. Mater. Lett. 8, 559–563 (2012).
[CrossRef]

Kim, T. S.

T. S. Kim, Y.-H. Kil, H. D. Yang, J.-H. Yang, W.-K. Hong, S. Kang, T. S. Jeong, and K.-H. Shim, “Growth and characterization of Si1−xGex QDs on Si/Si0.8Ge0.2 layer,” Electron. Mater. Lett. 8, 559–563 (2012).
[CrossRef]

Kinowski, C.

K. Raulin, S. Turrell, B. Capoen, C. Kinowski, V. T. T. Tran, M. Bouazaoui, and O. Cristini, “Raman characterization of localized CdS nanostructures synthesized by UV irradiation in sol-gel silica matrices,” J. Ram. Spectrosc. 42, 1366–1372 (2011).
[CrossRef]

Kirin, D.

S. K. Gupta, R. Desai, P. K. Jha, S. Sahoo, and D. Kirin, “Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence,” J. Ram. Spectrosc. 41, 350–355 (2010).

Klimin, S. N.

E. P. Pokatilov, S. N. Klimin, V. M. Fomin, J. T. Devreese, and F. W. Wise, “Multiphonon Raman scattering in semiconductor nanocrystals: Importance of nonadiabatic transitions,” Phys. Rev. B 65, 075316 (2002).
[CrossRef]

V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin, “Photoluminescence of spherical quantum dots,” Phys. Rev. B 57, 2415–2425 (1998).
[CrossRef]

Koguchi, N.

S. Sanguinetti, E. Poliani, M. Bonfanti, M. Guzzi, E. Grilli, M. Gurioli, and N. Koguchi, “Electron–phonon interaction in individual strain-free GaAs/Al0.3Ga0.7 As quantum dots,” Phys. Rev. B 73, 125342 (2006).
[CrossRef]

Kojima, K.

K. Kojima and A. Tomita, “Influence of pure dephasing by phonons on exciton–photon interfaces: Quantum microscopic theory,” Phys. Rev. B 73, 195312 (2006).
[CrossRef]

Kruchinin, S. Y.

S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B 81, 245303 (2010).
[CrossRef]

S. Y. Kruchinin and A. V. Fedorov, “Renormalization of the energy spectrum of quantum dots under vibrational resonance conditions: Persistent hole burning spectroscopy,” Opt. Spectrosc. 100, 41–48 (2006).
[CrossRef]

A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Y. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, Saint Petersburg, 2011).

Kuhn, T.

A. Vagov, V. M. Axt, T. Kuhn, W. Langbein, P. Borri, and U. Woggon, “Nonmonotonous temperature dependence of the initial decoherence in quantum dots,” Phys. Rev. B 70, 201305 (2004).
[CrossRef]

Lambert, K.

N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, “Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis,” Chem. Mater. 24, 311–318 (2012).
[CrossRef]

Langbein, W.

V. Cesari, W. Langbein, and P. Borri, “Dephasing of excitons and multiexcitons in undoped and p-doped InAs/GaAs quantum dots-in-a-well,” Phys. Rev. B 82, 195314 (2010).
[CrossRef]

B. Patton, W. Langbein, U. Woggon, L. Maingault, and H. Mariette, “Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots,” Phys. Rev. B 73, 235354 (2006).
[CrossRef]

A. Vagov, V. M. Axt, T. Kuhn, W. Langbein, P. Borri, and U. Woggon, “Nonmonotonous temperature dependence of the initial decoherence in quantum dots,” Phys. Rev. B 70, 201305 (2004).
[CrossRef]

Lange, H.

N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, “Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis,” Chem. Mater. 24, 311–318 (2012).
[CrossRef]

Lee, N. E.

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton–phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 261904 (2009).
[CrossRef]

Lemaitre, A.

V. Preisler, R. Ferreira, S. Hameau, L. A. de Vaulchier, Y. Guldner, M. L. Sadowski, and A. Lemaitre, “Hole–LO-phonon interaction in InAs/GaAs quantum dots,” Phys. Rev. B 72, 115309 (2005).
[CrossRef]

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, “Strong electron–phonon coupling regime in quantum dots: Evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152 (1999).
[CrossRef]

Levinson, I. B.

I. B. Levinson and E. I. Rashba, “Threshold phenomena and bound states in the polaron problem,” Physics-Uspekhi 16, 892–912 (1974).
[CrossRef]

Liang, Q.

G. Yu, Q. Liang, Y. Jia, and J. Dong, “Phonon sidebands of photoluminescence in single wall carbon nanotubes,” J. Appl. Phys. 107, 024314 (2010).
[CrossRef]

Llorens, J. M.

A. Cros, N. Garro, J. M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, and B. Daudin, “Raman study and theoretical calculations of strain in GaN quantum dot multilayers,” Phys. Rev. B 73, 115313 (2006).
[CrossRef]

Lomascolo, M.

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71, 235409 (2005).
[CrossRef]

Mahmoud, M. A. M.

S. Wageh, A. M. El-Nahas, A. A. Higazy, and M. A. M. Mahmoud, “Preparation and characterization of a novel system of CdS nanoparticles embedded in borophosphate glass matrix,” J. Alloys Comp. 555, 161–168 (2013).
[CrossRef]

Maingault, L.

B. Patton, W. Langbein, U. Woggon, L. Maingault, and H. Mariette, “Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots,” Phys. Rev. B 73, 235354 (2006).
[CrossRef]

Manna, L.

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71, 235409 (2005).
[CrossRef]

Mariette, H.

B. Patton, W. Langbein, U. Woggon, L. Maingault, and H. Mariette, “Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots,” Phys. Rev. B 73, 235354 (2006).
[CrossRef]

Masalov, V. M.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov, G. A. Emelchenko, and F. Briones, “Photoluminescence and resonant Raman scattering from ZnO-opal structures,” J. Appl. Phys. 96, 1001–1006 (2004).
[CrossRef]

Maslov, V. G.

Masumoto, Y.

A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003).
[CrossRef]

J. Zhao, A. Kanno, M. Ikezawa, and Y. Masumoto, “Longitudinal optical phonons in the excited state of CuBr quantum dots,” Phys. Rev. B 68, 113305 (2003).
[CrossRef]

A. V. Fedorov, A. V. Baranov, A. Itoh, and Y. Masumoto, “Renormalization of energy spectrum of quantum dots under vibrational resonance conditions,” Semiconductors 35, 1390–1397 (2001).
[CrossRef]

Meulenberg, R. W.

R. W. Meulenberg, T. Jennings, and G. F. Strouse, “Compressive and tensile stress in colloidal CdSe semiconductor quantum dots,” Phys. Rev. B 70, 235311 (2004).
[CrossRef]

Mills, D. L.

E. Evans and D. L. Mills, “Theory of inelastic scattering of slow electrons by long-wavelength surface optical phonons,” Phys. Rev. B 8, 4126–4139 (1973).

Miranda, R. P.

R. P. Miranda, M. I. Vasilevskiy, and C. Trallero-Giner, “Nonperturbative approach to the calculation of multi-phonon Raman scattering in semiconductor quantum dots: Polaron effect,” Phys. Rev. B 74, 115317 (2006).
[CrossRef]

Mofor, A. C.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006).
[CrossRef]

Mohanta, S. K.

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton–phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 261904 (2009).
[CrossRef]

Monroy, E.

A. Cros, N. Garro, J. M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, and B. Daudin, “Raman study and theoretical calculations of strain in GaN quantum dot multilayers,” Phys. Rev. B 73, 115313 (2006).
[CrossRef]

Moore, R. A.

A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Thanh, and K. Berwick, “Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy,” Phys. Rev. B 73, 075322 (2006).
[CrossRef]

A. V. Baranov, T. S. Perova, R. A. Moore, S. Solosin, A. V. Fedorov, V. Yam, V. Thanh, and D. Bouchier, “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys. 95, 2857–2863 (2004).
[CrossRef]

A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003).
[CrossRef]

Morais, P. C.

E. S. F. Neto, S. W. da Silva, P. C. Morais, M. I. Vasilevskiy, M. A. P. da Silva, and N. O. Dantas, “Resonant Raman scattering in CdSx Se1−x nanocrystals: Effects of phonon confinement, composition, and elastic strain,” J. Raman Spectrosc. 42, 1660–1669 (2011).
[CrossRef]

Mori, N.

N. Mori and T. Ando, “Electron–optical-phonon interaction in single and double heterostructures,” Phys. Rev. B 40, 6175–6188 (1989).
[CrossRef]

Mu, X.

S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon–assisted ultraviolet anti-stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett. 93, 201107 (2008).
[CrossRef]

Mukhina, M. V.

Muljarov, E. A.

E. A. Muljarov and R. Zimmermann, “Exciton dephasing in quantum dots due to LO-phonon coupling: An exactly solvable model,” Phys. Rev. Lett. 98, 187401 (2007).
[CrossRef] [PubMed]

Nabiev, I.

A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003).
[CrossRef]

Neto, E. S. F.

E. S. F. Neto, S. W. da Silva, P. C. Morais, M. I. Vasilevskiy, M. A. P. da Silva, and N. O. Dantas, “Resonant Raman scattering in CdSx Se1−x nanocrystals: Effects of phonon confinement, composition, and elastic strain,” J. Raman Spectrosc. 42, 1660–1669 (2011).
[CrossRef]

Nishijima, M.

T. Itoh, M. Nishijima, A. I. Ekimov, C. Gourdon, A. L. Efros, and M. Rosen, “Polaron and exciton–phonon complexes in CuCl nanocrystals,” Phys. Rev. Lett. 74, 1645 (1995).
[CrossRef] [PubMed]

Orlova, A. O.

Oueslati, M.

K. Rezgui, S. Aloulou, J. Rihani, and M. Oueslati, “Competition between strain and confinement effects on the crystalline quality of InAs/GaAs (001) quantum dots probed by Raman spectroscopy,” J. Raman Spectrosc. 43, 1964–1968 (2012).
[CrossRef]

Patton, B.

B. Patton, W. Langbein, U. Woggon, L. Maingault, and H. Mariette, “Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots,” Phys. Rev. B 73, 235354 (2006).
[CrossRef]

Perova, T. S.

S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B 81, 245303 (2010).
[CrossRef]

A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Thanh, and K. Berwick, “Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy,” Phys. Rev. B 73, 075322 (2006).
[CrossRef]

A. V. Baranov, T. S. Perova, R. A. Moore, S. Solosin, A. V. Fedorov, V. Yam, V. Thanh, and D. Bouchier, “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys. 95, 2857–2863 (2004).
[CrossRef]

A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003).
[CrossRef]

Pokatilov, E. P.

E. P. Pokatilov, S. N. Klimin, V. M. Fomin, J. T. Devreese, and F. W. Wise, “Multiphonon Raman scattering in semiconductor nanocrystals: Importance of nonadiabatic transitions,” Phys. Rev. B 65, 075316 (2002).
[CrossRef]

V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin, “Photoluminescence of spherical quantum dots,” Phys. Rev. B 57, 2415–2425 (1998).
[CrossRef]

Poliani, E.

S. Sanguinetti, E. Poliani, M. Bonfanti, M. Guzzi, E. Grilli, M. Gurioli, and N. Koguchi, “Electron–phonon interaction in individual strain-free GaAs/Al0.3Ga0.7 As quantum dots,” Phys. Rev. B 73, 125342 (2006).
[CrossRef]

Potemski, M.

B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
[CrossRef]

Potter, B. G.

G. H. Shih, C. G. Allen, and B. G. Potter, “Interfacial effects on the optical behavior of Ge:ITO and Ge:NO nanocomposite films,” Nanotechnol. 23, 075203 (2012).
[CrossRef]

Preisler, V.

V. Preisler, R. Ferreira, S. Hameau, L. A. de Vaulchier, Y. Guldner, M. L. Sadowski, and A. Lemaitre, “Hole–LO-phonon interaction in InAs/GaAs quantum dots,” Phys. Rev. B 72, 115309 (2005).
[CrossRef]

Premaratne, M.

I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15461–15482 (2011).
[CrossRef]

Rakovich, Y. P.

A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003).
[CrossRef]

Rashba, E. I.

I. B. Levinson and E. I. Rashba, “Threshold phenomena and bound states in the polaron problem,” Physics-Uspekhi 16, 892–912 (1974).
[CrossRef]

Raulin, K.

K. Raulin, S. Turrell, B. Capoen, C. Kinowski, V. T. T. Tran, M. Bouazaoui, and O. Cristini, “Raman characterization of localized CdS nanostructures synthesized by UV irradiation in sol-gel silica matrices,” J. Ram. Spectrosc. 42, 1366–1372 (2011).
[CrossRef]

Renevier, H.

A. Cros, N. Garro, A. Cantarero, J. Coraux, H. Renevier, and B. Daudin, “Raman scattering as a tool for the evaluation of strain in GaN/AlN quantum dots: The effect of capping,” Phys. Rev. B 76, 165403 (2007).
[CrossRef]

Rezgui, K.

K. Rezgui, S. Aloulou, J. Rihani, and M. Oueslati, “Competition between strain and confinement effects on the crystalline quality of InAs/GaAs (001) quantum dots probed by Raman spectroscopy,” J. Raman Spectrosc. 43, 1964–1968 (2012).
[CrossRef]

Rihani, J.

K. Rezgui, S. Aloulou, J. Rihani, and M. Oueslati, “Competition between strain and confinement effects on the crystalline quality of InAs/GaAs (001) quantum dots probed by Raman spectroscopy,” J. Raman Spectrosc. 43, 1964–1968 (2012).
[CrossRef]

Rogach, A. L.

A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003).
[CrossRef]

Rosen, M.

T. Itoh, M. Nishijima, A. I. Ekimov, C. Gourdon, A. L. Efros, and M. Rosen, “Polaron and exciton–phonon complexes in CuCl nanocrystals,” Phys. Rev. Lett. 74, 1645 (1995).
[CrossRef] [PubMed]

Rukhlenko, I. D.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[CrossRef]

A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
[CrossRef] [PubMed]

A. S. Baimuratov, V. K. Turkov, I. D. Rukhlenko, and A. V. Fedorov, “Shape-induced anisotropy of intraband luminescence from a semiconductor nanocrystal,” Opt. Lett. 37, 4645–4647 (2012).
[CrossRef] [PubMed]

I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15461–15482 (2011).
[CrossRef]

I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253–264 (2006).
[CrossRef]

I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238–244 (2006).
[CrossRef]

I. D. Rukhlenko and A. V. Fedorov, “Resonant photoluminescence of quantum dots: Dynamics of electronic subsystem,” Bull. Russ. Acad. Sci. 70, 126 (2006).

A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Y. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, Saint Petersburg, 2011).

Sadowski, M. L.

B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
[CrossRef]

V. Preisler, R. Ferreira, S. Hameau, L. A. de Vaulchier, Y. Guldner, M. L. Sadowski, and A. Lemaitre, “Hole–LO-phonon interaction in InAs/GaAs quantum dots,” Phys. Rev. B 72, 115309 (2005).
[CrossRef]

Sagar, D. M.

R. R. Cooney, S. L. Sewall, E. A. Dias, D. M. Sagar, K. E. H. Anderson, and P. Kambhampati, “Unified picture of electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 75, 245311 (2007).
[CrossRef]

Sahoo, S.

S. K. Gupta, R. Desai, P. K. Jha, S. Sahoo, and D. Kirin, “Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence,” J. Ram. Spectrosc. 41, 350–355 (2010).

Sakaki, H.

T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B 56, R4355 (1997).
[CrossRef]

Salvador, M. R.

M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton–phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006).
[CrossRef]

Samarov, E. N.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov, G. A. Emelchenko, and F. Briones, “Photoluminescence and resonant Raman scattering from ZnO-opal structures,” J. Appl. Phys. 96, 1001–1006 (2004).
[CrossRef]

Sanguinetti, S.

S. Sanguinetti, E. Poliani, M. Bonfanti, M. Guzzi, E. Grilli, M. Gurioli, and N. Koguchi, “Electron–phonon interaction in individual strain-free GaAs/Al0.3Ga0.7 As quantum dots,” Phys. Rev. B 73, 125342 (2006).
[CrossRef]

Schade, W.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006).
[CrossRef]

Schliwa, A.

N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, “Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis,” Chem. Mater. 24, 311–318 (2012).
[CrossRef]

Scholes, G. D.

M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton–phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006).
[CrossRef]

Sewall, S. L.

R. R. Cooney, S. L. Sewall, E. A. Dias, D. M. Sagar, K. E. H. Anderson, and P. Kambhampati, “Unified picture of electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 75, 245311 (2007).
[CrossRef]

Shih, G. H.

G. H. Shih, C. G. Allen, and B. G. Potter, “Interfacial effects on the optical behavior of Ge:ITO and Ge:NO nanocomposite films,” Nanotechnol. 23, 075203 (2012).
[CrossRef]

Shim, K.-H.

T. S. Kim, Y.-H. Kil, H. D. Yang, J.-H. Yang, W.-K. Hong, S. Kang, T. S. Jeong, and K.-H. Shim, “Growth and characterization of Si1−xGex QDs on Si/Si0.8Ge0.2 layer,” Electron. Mater. Lett. 8, 559–563 (2012).
[CrossRef]

Skolnick, M. S.

B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
[CrossRef]

Sohal, S.

S. Sohal, Y. Alivov, Z. Fan, and M. Holtz, “Role of phonons in the optical properties of magnetron sputtered ZnO studied by resonance Raman and photoluminescence,” J. Appl. Phys. 108, 053507 (2010).
[CrossRef]

Solosin, S.

A. V. Baranov, T. S. Perova, R. A. Moore, S. Solosin, A. V. Fedorov, V. Yam, V. Thanh, and D. Bouchier, “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys. 95, 2857–2863 (2004).
[CrossRef]

Stauber, T.

T. Stauber, R. Zimmermann, and H. Castella, “Electron–phonon interaction in quantum dots: A solvable model,” Phys. Rev. B 62, 7336 (2000).
[CrossRef]

Steer, M. J.

B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
[CrossRef]

Strouse, G. F.

R. W. Meulenberg, T. Jennings, and G. F. Strouse, “Compressive and tensile stress in colloidal CdSe semiconductor quantum dots,” Phys. Rev. B 70, 235311 (2004).
[CrossRef]

Talapin, D. V.

A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003).
[CrossRef]

Tansu, N.

S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon–assisted ultraviolet anti-stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett. 93, 201107 (2008).
[CrossRef]

Thanh, V.

A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Thanh, and K. Berwick, “Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy,” Phys. Rev. B 73, 075322 (2006).
[CrossRef]

A. V. Baranov, T. S. Perova, R. A. Moore, S. Solosin, A. V. Fedorov, V. Yam, V. Thanh, and D. Bouchier, “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys. 95, 2857–2863 (2004).
[CrossRef]

Thomsen, C.

N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, “Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis,” Chem. Mater. 24, 311–318 (2012).
[CrossRef]

Tiginyanu, I. M.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov, G. A. Emelchenko, and F. Briones, “Photoluminescence and resonant Raman scattering from ZnO-opal structures,” J. Appl. Phys. 96, 1001–1006 (2004).
[CrossRef]

Tomita, A.

K. Kojima and A. Tomita, “Influence of pure dephasing by phonons on exciton–photon interfaces: Quantum microscopic theory,” Phys. Rev. B 73, 195312 (2006).
[CrossRef]

Trallero-Giner, C.

R. P. Miranda, M. I. Vasilevskiy, and C. Trallero-Giner, “Nonperturbative approach to the calculation of multi-phonon Raman scattering in semiconductor quantum dots: Polaron effect,” Phys. Rev. B 74, 115317 (2006).
[CrossRef]

M. P. Chamberlain, C. Trallero-Giner, and M. Cardona, “Theory of one-phonon Raman scattering in semiconductor microcrystallites,” Phys. Rev. B 51, 1680–1693 (1995).
[CrossRef]

Tran, V. T. T.

K. Raulin, S. Turrell, B. Capoen, C. Kinowski, V. T. T. Tran, M. Bouazaoui, and O. Cristini, “Raman characterization of localized CdS nanostructures synthesized by UV irradiation in sol-gel silica matrices,” J. Ram. Spectrosc. 42, 1366–1372 (2011).
[CrossRef]

Tripathy, S. K.

S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon–assisted ultraviolet anti-stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett. 93, 201107 (2008).
[CrossRef]

Tschirner, N.

N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, “Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis,” Chem. Mater. 24, 311–318 (2012).
[CrossRef]

Turkov, V. K.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[CrossRef]

A. S. Baimuratov, V. K. Turkov, I. D. Rukhlenko, and A. V. Fedorov, “Shape-induced anisotropy of intraband luminescence from a semiconductor nanocrystal,” Opt. Lett. 37, 4645–4647 (2012).
[CrossRef] [PubMed]

Turrell, S.

K. Raulin, S. Turrell, B. Capoen, C. Kinowski, V. T. T. Tran, M. Bouazaoui, and O. Cristini, “Raman characterization of localized CdS nanostructures synthesized by UV irradiation in sol-gel silica matrices,” J. Ram. Spectrosc. 42, 1366–1372 (2011).
[CrossRef]

Ursaki, V. V.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov, G. A. Emelchenko, and F. Briones, “Photoluminescence and resonant Raman scattering from ZnO-opal structures,” J. Appl. Phys. 96, 1001–1006 (2004).
[CrossRef]

Vagov, A.

A. Vagov, V. M. Axt, T. Kuhn, W. Langbein, P. Borri, and U. Woggon, “Nonmonotonous temperature dependence of the initial decoherence in quantum dots,” Phys. Rev. B 70, 201305 (2004).
[CrossRef]

Valerini, D.

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71, 235409 (2005).
[CrossRef]

Vasilevskiy, M. I.

E. S. F. Neto, S. W. da Silva, P. C. Morais, M. I. Vasilevskiy, M. A. P. da Silva, and N. O. Dantas, “Resonant Raman scattering in CdSx Se1−x nanocrystals: Effects of phonon confinement, composition, and elastic strain,” J. Raman Spectrosc. 42, 1660–1669 (2011).
[CrossRef]

R. P. Miranda, M. I. Vasilevskiy, and C. Trallero-Giner, “Nonperturbative approach to the calculation of multi-phonon Raman scattering in semiconductor quantum dots: Polaron effect,” Phys. Rev. B 74, 115317 (2006).
[CrossRef]

Verzelen, O.

S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002).
[CrossRef]

O. Verzelen, R. Ferreira, and G. Bastard, “Excitonic polarons in semiconductor quantum dots,” Phys. Rev. Lett. 88, 146803 (2002).
[CrossRef] [PubMed]

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, “Strong electron–phonon coupling regime in quantum dots: Evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152 (1999).
[CrossRef]

Voss, T.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006).
[CrossRef]

Waag, A.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006).
[CrossRef]

Wageh, S.

S. Wageh, A. M. El-Nahas, A. A. Higazy, and M. A. M. Mahmoud, “Preparation and characterization of a novel system of CdS nanoparticles embedded in borophosphate glass matrix,” J. Alloys Comp. 555, 161–168 (2013).
[CrossRef]

Whittaker, D. M.

B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
[CrossRef]

Wilson, L. R.

B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
[CrossRef]

Wischmeier, L.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006).
[CrossRef]

Wise, F. W.

E. P. Pokatilov, S. N. Klimin, V. M. Fomin, J. T. Devreese, and F. W. Wise, “Multiphonon Raman scattering in semiconductor nanocrystals: Importance of nonadiabatic transitions,” Phys. Rev. B 65, 075316 (2002).
[CrossRef]

Woggon, U.

B. Patton, W. Langbein, U. Woggon, L. Maingault, and H. Mariette, “Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots,” Phys. Rev. B 73, 235354 (2006).
[CrossRef]

A. Vagov, V. M. Axt, T. Kuhn, W. Langbein, P. Borri, and U. Woggon, “Nonmonotonous temperature dependence of the initial decoherence in quantum dots,” Phys. Rev. B 70, 201305 (2004).
[CrossRef]

Xu, G.

S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon–assisted ultraviolet anti-stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett. 93, 201107 (2008).
[CrossRef]

Yam, V.

A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Thanh, and K. Berwick, “Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy,” Phys. Rev. B 73, 075322 (2006).
[CrossRef]

A. V. Baranov, T. S. Perova, R. A. Moore, S. Solosin, A. V. Fedorov, V. Yam, V. Thanh, and D. Bouchier, “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys. 95, 2857–2863 (2004).
[CrossRef]

Yang, H. D.

T. S. Kim, Y.-H. Kil, H. D. Yang, J.-H. Yang, W.-K. Hong, S. Kang, T. S. Jeong, and K.-H. Shim, “Growth and characterization of Si1−xGex QDs on Si/Si0.8Ge0.2 layer,” Electron. Mater. Lett. 8, 559–563 (2012).
[CrossRef]

Yang, J.-H.

T. S. Kim, Y.-H. Kil, H. D. Yang, J.-H. Yang, W.-K. Hong, S. Kang, T. S. Jeong, and K.-H. Shim, “Growth and characterization of Si1−xGex QDs on Si/Si0.8Ge0.2 layer,” Electron. Mater. Lett. 8, 559–563 (2012).
[CrossRef]

Yu, G.

G. Yu, Q. Liang, Y. Jia, and J. Dong, “Phonon sidebands of photoluminescence in single wall carbon nanotubes,” J. Appl. Phys. 107, 024314 (2010).
[CrossRef]

Zalamai, V. V.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov, G. A. Emelchenko, and F. Briones, “Photoluminescence and resonant Raman scattering from ZnO-opal structures,” J. Appl. Phys. 96, 1001–1006 (2004).
[CrossRef]

Zeman, J.

S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002).
[CrossRef]

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, “Strong electron–phonon coupling regime in quantum dots: Evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152 (1999).
[CrossRef]

Zhao, J.

J. Zhao, A. Kanno, M. Ikezawa, and Y. Masumoto, “Longitudinal optical phonons in the excited state of CuBr quantum dots,” Phys. Rev. B 68, 113305 (2003).
[CrossRef]

Zibik, E. A.

B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
[CrossRef]

Zimmermann, R.

E. A. Muljarov and R. Zimmermann, “Exciton dephasing in quantum dots due to LO-phonon coupling: An exactly solvable model,” Phys. Rev. Lett. 98, 187401 (2007).
[CrossRef] [PubMed]

T. Stauber, R. Zimmermann, and H. Castella, “Electron–phonon interaction in quantum dots: A solvable model,” Phys. Rev. B 62, 7336 (2000).
[CrossRef]

Appl. Phys. Lett. (3)

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton–phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 261904 (2009).
[CrossRef]

S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, and J. B. Khurgin, “Phonon–assisted ultraviolet anti-stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett. 93, 201107 (2008).
[CrossRef]

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton–phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89, 182107 (2006).
[CrossRef]

Bull. Russ. Acad. Sci. (1)

I. D. Rukhlenko and A. V. Fedorov, “Resonant photoluminescence of quantum dots: Dynamics of electronic subsystem,” Bull. Russ. Acad. Sci. 70, 126 (2006).

Chem. Mater. (1)

N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, “Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis,” Chem. Mater. 24, 311–318 (2012).
[CrossRef]

Electron. Mater. Lett. (1)

T. S. Kim, Y.-H. Kil, H. D. Yang, J.-H. Yang, W.-K. Hong, S. Kang, T. S. Jeong, and K.-H. Shim, “Growth and characterization of Si1−xGex QDs on Si/Si0.8Ge0.2 layer,” Electron. Mater. Lett. 8, 559–563 (2012).
[CrossRef]

J. Alloys Comp. (1)

S. Wageh, A. M. El-Nahas, A. A. Higazy, and M. A. M. Mahmoud, “Preparation and characterization of a novel system of CdS nanoparticles embedded in borophosphate glass matrix,” J. Alloys Comp. 555, 161–168 (2013).
[CrossRef]

J. Appl. Phys. (4)

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, V. M. Masalov, E. N. Samarov, G. A. Emelchenko, and F. Briones, “Photoluminescence and resonant Raman scattering from ZnO-opal structures,” J. Appl. Phys. 96, 1001–1006 (2004).
[CrossRef]

A. V. Baranov, T. S. Perova, R. A. Moore, S. Solosin, A. V. Fedorov, V. Yam, V. Thanh, and D. Bouchier, “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys. 95, 2857–2863 (2004).
[CrossRef]

G. Yu, Q. Liang, Y. Jia, and J. Dong, “Phonon sidebands of photoluminescence in single wall carbon nanotubes,” J. Appl. Phys. 107, 024314 (2010).
[CrossRef]

S. Sohal, Y. Alivov, Z. Fan, and M. Holtz, “Role of phonons in the optical properties of magnetron sputtered ZnO studied by resonance Raman and photoluminescence,” J. Appl. Phys. 108, 053507 (2010).
[CrossRef]

J. Chem. Phys. (1)

M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton–phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006).
[CrossRef]

J. Exp. Theor. Phys. (1)

A. V. Fedorov and A. V. Baranov, “Exciton–vibrational interaction of the frohlich type in quasi-zero-size systems,” J. Exp. Theor. Phys. 83, 610–618 (1996).

J. Ram. Spectrosc. (2)

K. Raulin, S. Turrell, B. Capoen, C. Kinowski, V. T. T. Tran, M. Bouazaoui, and O. Cristini, “Raman characterization of localized CdS nanostructures synthesized by UV irradiation in sol-gel silica matrices,” J. Ram. Spectrosc. 42, 1366–1372 (2011).
[CrossRef]

S. K. Gupta, R. Desai, P. K. Jha, S. Sahoo, and D. Kirin, “Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence,” J. Ram. Spectrosc. 41, 350–355 (2010).

J. Raman Spectrosc. (3)

S. Dhara, A. K. Arora, S. Bera, and J. Ghatak, “Multiphonon probe in ZnS quantum dots,” J. Raman Spectrosc. 41, 1102–1105 (2010).
[CrossRef]

E. S. F. Neto, S. W. da Silva, P. C. Morais, M. I. Vasilevskiy, M. A. P. da Silva, and N. O. Dantas, “Resonant Raman scattering in CdSx Se1−x nanocrystals: Effects of phonon confinement, composition, and elastic strain,” J. Raman Spectrosc. 42, 1660–1669 (2011).
[CrossRef]

K. Rezgui, S. Aloulou, J. Rihani, and M. Oueslati, “Competition between strain and confinement effects on the crystalline quality of InAs/GaAs (001) quantum dots probed by Raman spectroscopy,” J. Raman Spectrosc. 43, 1964–1968 (2012).
[CrossRef]

Nanotechnol. (1)

G. H. Shih, C. G. Allen, and B. G. Potter, “Interfacial effects on the optical behavior of Ge:ITO and Ge:NO nanocomposite films,” Nanotechnol. 23, 075203 (2012).
[CrossRef]

Opt. Express (1)

I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15461–15482 (2011).
[CrossRef]

Opt. Lett. (3)

Opt. Spectrosc. (3)

I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253–264 (2006).
[CrossRef]

I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238–244 (2006).
[CrossRef]

S. Y. Kruchinin and A. V. Fedorov, “Renormalization of the energy spectrum of quantum dots under vibrational resonance conditions: Persistent hole burning spectroscopy,” Opt. Spectrosc. 100, 41–48 (2006).
[CrossRef]

Phys. Rev. B (26)

R. P. Miranda, M. I. Vasilevskiy, and C. Trallero-Giner, “Nonperturbative approach to the calculation of multi-phonon Raman scattering in semiconductor quantum dots: Polaron effect,” Phys. Rev. B 74, 115317 (2006).
[CrossRef]

E. P. Pokatilov, S. N. Klimin, V. M. Fomin, J. T. Devreese, and F. W. Wise, “Multiphonon Raman scattering in semiconductor nanocrystals: Importance of nonadiabatic transitions,” Phys. Rev. B 65, 075316 (2002).
[CrossRef]

T. Stauber, R. Zimmermann, and H. Castella, “Electron–phonon interaction in quantum dots: A solvable model,” Phys. Rev. B 62, 7336 (2000).
[CrossRef]

V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin, “Photoluminescence of spherical quantum dots,” Phys. Rev. B 57, 2415–2425 (1998).
[CrossRef]

T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B 56, R4355 (1997).
[CrossRef]

S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B 81, 245303 (2010).
[CrossRef]

M. P. Chamberlain, C. Trallero-Giner, and M. Cardona, “Theory of one-phonon Raman scattering in semiconductor microcrystallites,” Phys. Rev. B 51, 1680–1693 (1995).
[CrossRef]

E. Evans and D. L. Mills, “Theory of inelastic scattering of slow electrons by long-wavelength surface optical phonons,” Phys. Rev. B 8, 4126–4139 (1973).

N. Mori and T. Ando, “Electron–optical-phonon interaction in single and double heterostructures,” Phys. Rev. B 40, 6175–6188 (1989).
[CrossRef]

B. A. Carpenter, E. A. Zibik, M. L. Sadowski, L. R. Wilson, D. M. Whittaker, J. W. Cockburn, M. S. Skolnick, M. Potemski, M. J. Steer, and M. Hopkinson, “Intraband magnetospectroscopy of singly and doubly charged n-type self-assembled quantum dots,” Phys. Rev. B 74, 161302 (2006).
[CrossRef]

V. Preisler, R. Ferreira, S. Hameau, L. A. de Vaulchier, Y. Guldner, M. L. Sadowski, and A. Lemaitre, “Hole–LO-phonon interaction in InAs/GaAs quantum dots,” Phys. Rev. B 72, 115309 (2005).
[CrossRef]

J. Zhao, A. Kanno, M. Ikezawa, and Y. Masumoto, “Longitudinal optical phonons in the excited state of CuBr quantum dots,” Phys. Rev. B 68, 113305 (2003).
[CrossRef]

S. Hameau, J. N. Isaia, Y. Guldner, E. Deleporte, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, and J. M. Gerard, “Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 65, 085316 (2002).
[CrossRef]

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Exciton–phonon coupling in semiconductor quantum dots: Resonant Raman scattering,” Phys. Rev. B 56, 7491 (1997).
[CrossRef]

S. Sanguinetti, E. Poliani, M. Bonfanti, M. Guzzi, E. Grilli, M. Gurioli, and N. Koguchi, “Electron–phonon interaction in individual strain-free GaAs/Al0.3Ga0.7 As quantum dots,” Phys. Rev. B 73, 125342 (2006).
[CrossRef]

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71, 235409 (2005).
[CrossRef]

V. Cesari, W. Langbein, and P. Borri, “Dephasing of excitons and multiexcitons in undoped and p-doped InAs/GaAs quantum dots-in-a-well,” Phys. Rev. B 82, 195314 (2010).
[CrossRef]

K. Kojima and A. Tomita, “Influence of pure dephasing by phonons on exciton–photon interfaces: Quantum microscopic theory,” Phys. Rev. B 73, 195312 (2006).
[CrossRef]

A. Vagov, V. M. Axt, T. Kuhn, W. Langbein, P. Borri, and U. Woggon, “Nonmonotonous temperature dependence of the initial decoherence in quantum dots,” Phys. Rev. B 70, 201305 (2004).
[CrossRef]

R. R. Cooney, S. L. Sewall, E. A. Dias, D. M. Sagar, K. E. H. Anderson, and P. Kambhampati, “Unified picture of electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 75, 245311 (2007).
[CrossRef]

B. Patton, W. Langbein, U. Woggon, L. Maingault, and H. Mariette, “Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots,” Phys. Rev. B 73, 235354 (2006).
[CrossRef]

A. Cros, N. Garro, A. Cantarero, J. Coraux, H. Renevier, and B. Daudin, “Raman scattering as a tool for the evaluation of strain in GaN/AlN quantum dots: The effect of capping,” Phys. Rev. B 76, 165403 (2007).
[CrossRef]

A. Cros, N. Garro, J. M. Llorens, A. García-Cristóbal, A. Cantarero, N. Gogneau, E. Monroy, and B. Daudin, “Raman study and theoretical calculations of strain in GaN quantum dot multilayers,” Phys. Rev. B 73, 115313 (2006).
[CrossRef]

A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Thanh, and K. Berwick, “Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy,” Phys. Rev. B 73, 075322 (2006).
[CrossRef]

R. W. Meulenberg, T. Jennings, and G. F. Strouse, “Compressive and tensile stress in colloidal CdSe semiconductor quantum dots,” Phys. Rev. B 70, 235311 (2004).
[CrossRef]

A. V. Baranov, Y. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68, 165306 (2003).
[CrossRef]

Phys. Rev. Lett. (4)

E. A. Muljarov and R. Zimmermann, “Exciton dephasing in quantum dots due to LO-phonon coupling: An exactly solvable model,” Phys. Rev. Lett. 98, 187401 (2007).
[CrossRef] [PubMed]

T. Itoh, M. Nishijima, A. I. Ekimov, C. Gourdon, A. L. Efros, and M. Rosen, “Polaron and exciton–phonon complexes in CuCl nanocrystals,” Phys. Rev. Lett. 74, 1645 (1995).
[CrossRef] [PubMed]

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, “Strong electron–phonon coupling regime in quantum dots: Evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152 (1999).
[CrossRef]

O. Verzelen, R. Ferreira, and G. Bastard, “Excitonic polarons in semiconductor quantum dots,” Phys. Rev. Lett. 88, 146803 (2002).
[CrossRef] [PubMed]

Physics-Uspekhi (1)

I. B. Levinson and E. I. Rashba, “Threshold phenomena and bound states in the polaron problem,” Physics-Uspekhi 16, 892–912 (1974).
[CrossRef]

Sci. Rep. (1)

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[CrossRef]

Semiconductors (2)

A. V. Fedorov and A. V. Baranov, “Relaxation of charge carriers in quantum dots with the involvement of plasmon–phonon modes,” Semiconductors 38, 1101–1109 (2004).
[CrossRef]

A. V. Fedorov, A. V. Baranov, A. Itoh, and Y. Masumoto, “Renormalization of energy spectrum of quantum dots under vibrational resonance conditions,” Semiconductors 35, 1390–1397 (2001).
[CrossRef]

Other (5)

O. Madelung, M. Schultz, and H. Weiss, eds., “Semiconductors. Physics of Group IV Elements and III–V Compounds,” Landolt-Börnstein, New Series, Group III, vol. 17, Pt. a (Springer-Verlag, Berlin, 1982).

K. Blum, Density Matrix Theory and Applications (Springer, Berlin, 2012).
[CrossRef]

A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Y. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, Saint Petersburg, 2011).

A. Rogach, ed., Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications (Springer, New York, 2008).
[CrossRef]

Y. Masumoto and T. Takagahara, eds., Semiconductor Quantum Dots: Physics, Spectroscopy and Applications (Springer, New York, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Formation of polaron-like states from a pair of nondegenerate electron–hole states coupled via one, two, three or four degenerate LO phonon modes of energy Ω. The electron–phonon interaction transforms the degenerate state of the QD into two, three, four or five nondegenerate polaron-like states.

Fig. 2
Fig. 2

Feynman diagrams describing [(a) and (b)] creation and [(c) and (d)] annihilation of a polaron-like quasiparticle of energy p with the simultaneous (a) absorption of a photon, h̄ωL, and a phonon, Ω, (b) absorption of a photon and emission of a phonon, (c) emission of a photon, h̄ωλ, and absorption of a phonon, and (d) emission of a photon and a phonon.

Fig. 3
Fig. 3

Matrix elements and overlap integrals as functions of potential barrier heights for electrons and holes in a spherical InAs QD with R = 9.14 nm. The material parameters are: ε0 = 15.15, ε = 12.25, Eg = 418 meV, Ω = 29.5 meV, me = 0.0219m0, and mh = 0.43m0 [64] (m0 is the free-electron mass). For other parameter refer to the text.

Fig. 4
Fig. 4

Photoluminescence spectra of InAs QD with a pair of nondegenerate electronic states coupled through two phonon modes. The excitation frequencies are: h ¯ ω 2 ( 2 ) = 530.6 meV, h ¯ ω 3 ( 2 ) = 533.7 meV, and h ¯ ω 1 ( 2 ) = 536.8 meV; V(2) = 3.1 meV. For material parameters refer to the text.

Fig. 5
Fig. 5

Excitation photoluminescence spectra of InAs QD with a pair of nondegenerate electronic states coupled through two phonon modes. The detection frequencies are shown near the spectra. The parameter values and resonant frequencies ω j ( 2 ) (j = 1, 2, 3) are the same as in Fig. 4.

Equations (55)

Equations on this page are rendered with MathJax. Learn more.

H e , ph = p 1 , p 2 q V p 2 ; p 1 ( q ) a p 2 + a p 1 b q + H . c . ,
H e , L = p V p ; 0 ( L ) a p + + H . c .
H e , r = p , λ V p ; 0 ( λ ) a p + c λ + H . c . ,
F p = 2 δ l e , l h δ m e , m h 0 R n e , l e R n h , l h x 2 d x ,
φ p k 2 , p k 1 ( q ) = 4 ( 2 l q + 1 ) ( 2 l k 1 + 1 ) h ¯ Ω ( 2 l k 2 + 1 ) ε * R C l q 0 , l k 1 0 l k 2 0 C l q m q , l k 1 m k 1 l k 2 m k 2 n k 2 l k 2 , n k 1 l k 1 n q l q ,
n k 2 l k 2 , n k 1 l k 1 n q l q = 0 n q l q R n k 1 l k 1 R n k 2 l k 2 x 2 d x ,
R n k l k = 1 A n k l k × { κ l k ( α n k l k s ) j l k ( α n k l k d x ) , x 1 j l k ( α n k l k d ) κ l k ( α n k l k s x ) , x > 1 ,
A n k l k = κ l k + 1 ( α n k l k s ) κ l k 1 ( α n k l k s ) j l k 2 ( α n k l k d ) j l k + 1 ( α n k l k d ) j l k 1 ( α n k l k d ) κ l k 2 ( α n k l k s ) ,
α n k l k d = ( R / h ¯ ) 2 m k d E n k l k ,
α n k l k s = ( R / h ¯ ) 2 m k s ( V k E n k l k ) ;
m k s α n k l k d j l k ( α n k l k d ) j l k ( α n k l k d ) = m k d α n k l k s κ l k ( α n k l k s ) κ l k ( α n k l k s ) ,
n q l q = 1 ξ n q l q j l q + 1 ( ξ n q l q ) × { j l q ( ξ n q l q x ) , x 1 0 , x > 1 ,
F p F l e m e , l h m h n e n h = 2 δ l e , l h δ m e , m h A n e l e A n h l h ( κ l e ( α n e l e s ) κ l h ( α n h l h s ) 0 1 j l e ( α n e l e d x ) j l h ( α n h l h d x ) x 2 d x + j l e ( α n e l e d ) j l h ( α n h l h d ) 1 κ l e ( α n e l e s x ) κ l h ( α n h l h s x ) x 2 d x )
n k 2 l k 2 , n k 1 l k 1 n q l q = κ l k 1 ( α n k 1 l k 1 s ) κ l k 2 ( α n k 2 l k 2 s ) ξ n q l q j l q + 1 ( ξ n q l q ) A n k 1 l k 1 A n k 2 l k 2 × 0 1 j l q ( ξ n q l q x ) j l k 1 ( α n k 1 l k 1 d x ) j l k 2 ( α n k 2 l k 2 d x ) x 2 d x .
H ˜ = U + H U ,
U = exp ( p , q ( Φ p ; p ( q ) b q H . c . ) a p + a p )
E ˜ p = E p q h ¯ Ω | Φ p ; p ( q ) | 2
H ˜ e , ph = p 1 p 2 q V p 2 ; p 1 ( q ) a p 2 + a p 1 b q + H . c . ,
H ˜ e , L = p V p ; 0 ( L ) ( 1 + q ( Φ p ; p ( q ) b q H . c . ) ) a p + + H . c . ,
H ˜ e , r = p , λ V p ; 0 ( λ ) ( 1 + q ( Φ p ; p ( q ) b q H . c . ) ) a p + c λ + H . c .
H ^ e , L ( k ) = ( 0 0 0 H 1 ( L , k ) 0 0 0 H 2 ( L , k ) 0 0 0 H k + 1 ( L , k ) H 1 ( L , k ) * H 2 ( L , k ) * H k + 1 ( L , k ) * 0 ) ,
H 1 ( L , k ) = V p 2 ; 0 ( L ) S 1 ; 1 ( k ) + V p 1 ; 0 ( L ) ν = 1 k Φ p 1 ; p 1 ( q ν ) S 1 + ν ; 1 ( k ) ,
H 2 ( L , k ) = V p 2 ; 0 ( L ) S 1 ; 2 ( k ) + V p 1 ; 0 ( L ) ν = 1 k Φ p 1 ; p 1 ( q ν ) S 1 + ν ; 2 ( k ) ,
H n ( L , k ) = V p 1 ; 0 ( L ) ν = 1 k Φ p 1 ; p 1 ( q ν ) S 1 + ν ; n ( k )
H ^ e , r ( k ) = ( 0 0 0 H 1 , q 1 ( r , k ) H 1 , q 2 ( r , k ) H 1 , q k ( r , k ) 0 0 0 H 2 , q 1 ( r , k ) H 2 , q 2 ( r , k ) H 2 , q k ( r , k ) 0 0 0 H k + 1 , q 1 ( r , k ) H k + 1 , q 2 ( r , k ) H k + 1 , q k ( r , k ) H 1 , q 1 ( r , k ) * H 2 , q 1 ( r , k ) * H k + 1 , q 1 ( r , k ) * 0 0 0 H 1 , q 2 ( r , k ) * H 2 , q 1 ( r , k ) * H k + 1 , q 2 ( r , k ) * 0 0 0 H 1 , q k ( r , k ) * H 2 , q k ( r , k ) * H k + 1 , q k ( r , k ) * 0 0 0 ) ,
H 1 , q ( r , k ) = V p 1 ; 0 ( λ ) S 1 + q ; 1 ( k ) + V p 2 ; 0 ( λ ) Φ p 2 ; p 2 ( q ) S 1 ; 1 ( k ) ,
H 2 , q ( r , k ) = V p 1 ; 0 ( λ ) S 1 + q ; 2 ( k ) + V p 2 ; 0 ( λ ) Φ p 2 ; p 2 ( q ) S 1 ; 2 ( k ) ,
H n , q ( r , k ) = V p 1 ; 0 ( λ ) S 1 + q ; n ( k )
| i = | 0 | 0 q | 0 λ ,
| 1 = | 1 ( k ) | 0 q | 0 λ , , | k + 1 = | k + 1 ( k ) | 0 q | 0 λ ,
| f 1 = | 0 | 1 q 1 | 1 λ , , | f k = | 0 | 1 q k | 1 λ .
ρ μ ν ( t ) t = 1 i h ¯ [ H ^ ( t ) , ρ ( t ) ] μ ν γ μ ν ρ μ ν ( t ) + δ μ ν ν ν ζ ν ν ρ ν ν ( t ) ,
d 2 σ d Θ d ω λ = C ( ω λ ) η = 1 k ( μ = 1 k + 1 2 γ i μ γ μ μ 2 γ ^ i μ + γ ph Δ L μ 2 + γ i μ 2 | d μ ( L , k ) | 2 | d μ , q η ( λ , k ) | 2 Δ λ μ 2 + γ f μ 2 + ν = 2 k + 1 μ = 1 , ( μ 2 ) ν 1 2 ζ ν μ γ i ν γ μ μ γ ν ν 2 γ ν f Δ L μ 2 + γ i μ 2 | d μ ( L , k ) | 2 | d ν , q η ( λ , k ) | 2 Δ λ ν 2 + γ f ν 2 ) ,
d n ( L , k ) = F p 2 S 1 ; n ( k ) + F p 1 ν = 1 k Φ p 1 ; p 1 ( q ν ) S 1 + ν ; n ( k ) ,
d n , q ( λ , k ) = F p 1 S 1 + q ; n ( k ) + F p 2 Φ p 2 ; p 2 ( q ) S 1 ; n ( k ) .
( l 1 , l 2 ) = ( H ( l 1 , l 2 , l 2 ) 0 0 0 0 H ( l 1 , l 2 , l 2 1 ) 0 0 0 0 H ( l 1 , l 2 , 1 l 2 ) 0 0 0 0 H ( l 1 , l 2 , l 2 ) ) ,
𝒮 ( l 1 , l 2 ) = ( S ( l 1 , l 2 , l 2 ) 0 0 0 0 S ( l 1 , l 2 , l 2 1 ) 0 0 0 0 S ( l 1 , l 2 , 1 l 2 ) 0 0 0 0 S ( l 1 , l 2 , l 2 ) ) .
k ( l 1 , l 2 , m 2 ) = ν = 1 1 + min ( l 1 , l 2 ) min ( 2 l 1 + 1 , 2 l q ν + 1 , 2 l 1 + 2 l q ν l 2 | m 2 | + 1 ) .
H ( l 1 , l 2 , m 2 ) H ˜ e , ph ( k ) = ( E ˜ p 2 V p 2 ; p 1 ( q 1 ) V p 2 ; p 1 ( q 2 ) V p 2 ; p 1 ( q k ) V p 2 ; p 1 ( q 1 ) * E ˜ p 1 + h ¯ Ω 0 0 V p 2 ; p 1 ( q 2 ) * 0 E ˜ p 1 + h ¯ Ω 0 V p 2 ; p 1 ( q k ) * 0 0 E ˜ p 1 + h ¯ Ω ) .
S ( l 1 , l 2 , m 2 ) S ( k ) = ( S 1 ; 1 ( k ) S 1 ; 2 ( k ) 0 0 0 0 S 2 ; 1 ( k ) S 2 ; 2 ( k ) S 2 ; 3 ( k ) S 2 ; 4 ( k ) S 2 ; k ( k ) S 2 ; k + 1 ( k ) S 3 ; 1 ( k ) S 3 ; 2 ( k ) S 3 ; 3 ( k ) S 3 ; 4 ( k ) S 3 ; k ( k ) S 3 ; k + 1 ( k ) S 4 ; 1 ( k ) S 4 ; 2 ( k ) 0 S 4 ; 4 ( k ) S 4 ; k ( k ) S 4 ; k + 1 ( k ) S k ; 1 ( k ) S k ; 2 ( k ) 0 0 S k ; k ( k ) S k ; k + 1 ( k ) S k + 1 ; 1 ( k ) S k + 1 ; 2 ( k ) 0 0 0 S k + 1 ; k + 1 ( k ) ) ,
S 1 ; 1 ( k ) = ( α + δ ( k ) ) χ ( k ) / β ( k , + ) , S 1 ; 2 ( k ) = ( α δ ( k ) ) χ ( k ) / β ( k , ) ,
S n ; 1 ( k ) = 2 V p 2 ; p 1 ( q n 1 ) * χ ( k ) / β ( k , + ) , S n ; 2 ( k ) = 2 V p 2 ; p 1 ( q n 1 ) * χ ( k ) / β ( k , )
S n ; m ( k ) = V p 2 ; p 1 ( q m 1 ) V p 2 ; p 1 ( q n 1 ) * / ( V ( m 1 ) V ( m 2 ) )
S n ; n ( k ) = V ( n 2 ) / V ( n 1 )
β ( k , ± ) = [ ( α ± δ ( k ) ) 2 + 4 ( V ( k ) ) 2 ] 1 / 2 , χ ( k ) = | V p 2 ; p 1 ( q k ) | / V p 2 ; p 1 ( q k ) * ,
δ ( k ) = [ α 2 + 4 ( V ( k ) ) 2 ] 1 / 2 , V ( k ) = ( ν = 1 k | V p 2 ; p 1 ( q ν ) | 2 ) 1 / 2 .
1 , 2 ( k ) = 1 2 ( E ˜ p 1 + E ˜ p 2 + h ¯ Ω ± δ ( k ) ) ,
3 ( k ) = 4 ( k ) = = k + 1 ( k ) = E ˜ p 1 + h ¯ Ω
| ψ ^ n = m = 1 k + 1 S m ; n ( k ) * | ψ ˜ m .
( 0 , 1 ) = ( E ˜ p 2 ( + 1 ) V p 2 ; p 1 ( 1 , 1 , 1 ) 0 0 0 0 V p 2 ; p 1 ( 1 , 1 , 1 ) * E ˜ p 1 + h ¯ Ω 0 0 0 0 0 0 E ˜ p 2 ( 0 ) V p 2 ; p 1 ( 1 , 1 , 0 ) 0 0 0 0 V p 2 ; p 1 ( 1 , 1 , 0 ) * E ˜ p 1 + h ¯ Ω 0 0 0 0 0 0 E ˜ p 2 ( 1 ) V p 2 ; p 1 ( 1 , 1 , + 1 ) 0 0 0 0 V p 2 ; p 1 ( 1 , 1 , + 1 ) * E ˜ p 1 + h ¯ Ω )
𝒮 ( 0 , 1 ) = ( S ( 0 , 1 , + 1 ) 0 0 0 S ( 0 , 1 , 0 ) 0 0 0 S ( 0 , 1 , 1 ) ) ,
( 1 , 0 ) = ( E ˜ p 2 V p 2 ; p 1 ( 1 , 1 , + 1 ) V p 2 ; p 1 ( 1 , 1 , 0 ) V p 2 ; p 1 ( 1 , 1 , 1 ) V p 2 ; p 1 ( 1 , 1 , + 1 ) * E ˜ p 1 ( + 1 ) + h ¯ Ω 0 0 V p 2 ; p 1 ( 1 , 1 , 0 ) * 0 E ˜ p 1 ( 0 ) + h ¯ Ω 0 V p 2 ; p 1 ( 1 , 1 , 1 ) * 0 0 E ˜ p 1 ( 1 ) + h ¯ Ω )
H ( 1 , 2 , ± 2 ) = ( E ˜ p 2 ( ± 2 ) V p 2 ; p 1 ( 1 , 3 , 3 ) V p 2 ; p 1 ( 1 , 3 , 2 ) V p 2 ; p 1 ( 1 , 3 , 1 ) V p 2 ; p 1 ( 1 , 1 , 1 ) V p 2 ; p 1 ( 1 , 3 , 3 ) * E ˜ p 1 ( 1 ) + h ¯ Ω 0 0 0 V p 2 ; p 1 ( 1 , 3 , 2 ) * 0 E ˜ p 1 ( 0 ) + h ¯ Ω 0 0 V p 2 ; p 1 ( 1 , 3 , 1 ) * 0 0 E ˜ p 1 ( ± 1 ) + h ¯ Ω 0 V p 2 ; p 1 ( 1 , 1 , 1 ) * 0 0 0 E ˜ p 1 ( ± 1 ) + h ¯ Ω ) ,
H ( 1 , 2 , ± 1 ) = = ( E ˜ p 2 ( ± 1 ) V p 2 ; p 1 ( 1 , 3 , 2 ) V p 2 ; p 1 ( 1 , 3 , 1 ) V p 2 ; p 1 ( 1 , 3 , 0 ) V p 2 ; p 1 ( 1 , 1 , 1 ) V p 2 ; p 1 ( 1 , 1 , 0 ) V p 2 ; p 1 ( 1 , 3 , 2 ) * E ˜ p 1 ( 1 ) + h ¯ Ω 0 0 0 0 V p 2 ; p 1 ( 1 , 3 , 1 ) * 0 E ˜ p 1 ( 0 ) + h ¯ Ω 0 0 0 V p 2 ; p 1 ( 1 , 3 , 0 ) * 0 0 E ˜ p 1 ( ± 1 ) + h ¯ Ω 0 0 V p 2 ; p 1 ( 1 , 1 , 1 ) * 0 0 0 E ˜ p 1 ( 0 ) + h ¯ Ω 0 V p 2 ; p 1 ( 1 , 1 , 0 ) * 0 0 0 0 E ˜ p 1 ( ± 1 ) + h ¯ Ω )
H ( 1 , 2 , 0 ) = = ( E ˜ p 2 ( 0 ) V p 2 ; p 1 ( 1 , 3 , 1 ) V p 2 ; p 1 ( 1 , 3 , 0 ) V p 2 ; p 1 ( 1 , 3 , 1 ) V p 2 ; p 1 ( 1 , 1 , 1 ) V p 2 ; p 1 ( 1 , 1 , 0 ) V p 2 ; p 1 ( 1 , 1 , 1 ) V p 2 ; p 1 ( 1 , 3 , 1 ) * E ˜ p 1 ( 1 ) + h ¯ Ω 0 0 0 0 0 V p 2 ; p 1 ( 1 , 3 , 0 ) * 0 E ˜ p 1 ( 0 ) + h ¯ Ω 0 0 0 0 V p 2 ; p 1 ( 1 , 3 , ± 1 ) * 0 0 E ˜ p 1 ( ± 1 ) + h ¯ Ω 0 0 0 V p 2 ; p 1 ( 1 , 1 , 1 ) * 0 0 0 E ˜ p 1 ( 1 ) + h ¯ Ω 0 0 V p 2 ; p 1 ( 1 , 1 , 0 ) * 0 0 0 0 E ˜ p 1 ( 0 ) + h ¯ Ω 0 V p 2 ; p 1 ( 1 , 1 , ± 1 ) * 0 0 0 0 0 E ˜ p 1 ( ± 1 ) + h ¯ Ω ) .

Metrics