Abstract

In this paper, we propose an advanced hyperspectral video imaging system (AHVIS), which consists of an objective lens, an occlusion mask, a relay lens, an Amici prism and two cameras. An RGB camera is used for spatial reading and a gray scale camera is used for measuring the scene with spectral information. The objective lens collects more light energy from the observed scene and images the scene on an occlusion mask, which subsamples the image of the observed scene. Then, the subsampled image is sent to the gray scale camera through the relay lens and the Amici prism. The Amici prism that is used to realize spectral dispersion along the optical path reduces optical distortions and offers direct view of the scene. The main advantages of the proposed system are improved light throughput and less optical distortion. Furthermore, the presented configuration is more compact, robust and practicable.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, and B. Huang, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” Proc. SPIE 4151, 94–102 (2001).
    [CrossRef]
  2. C. M. Stellman, F. M. Olchowski, and J. V. Michalowicz, “WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment),” Proc. SPIE 4379, 339–346 (2001).
    [CrossRef]
  3. R. P. Lin, B. R. Dennis, and A. O. Benz, eds., The Reuven Ramaty High-Energy Solar Spectroscopic Imager(RHESSI)-Mission Description and Early Results (Springer, 2003).
  4. J. Murguia, G. Diaz, T. Reeves, R. Nelson, J. Mooney, F. Shepherd, G. Griffith, and D. Franco, “Applications of multispectral video,” Proc. SPIE 7780, 77800B (2010).
    [CrossRef]
  5. Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face Recognition in Hyperspectral Images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003).
    [CrossRef]
  6. W. M. Porter and H. T. Enmark, “A system overview of the airborne visible/infrared imaging spectrometer(AVIRIS),” Proc. SPIE 834, 22–31 (1987).
    [CrossRef]
  7. R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
    [CrossRef]
  8. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [CrossRef]
  9. M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications,” Proc. SPIE 6062, 60620G (2006).
    [CrossRef]
  10. M. R. Descour and E. L. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34(22), 4817–4826 (1995).
    [CrossRef] [PubMed]
  11. W. R. Johnson, D. W. Wilson, and G. Bearman, “Spatial-spectral modulating snapshot hyperspectral imager,” Appl. Opt. 45(9), 1898–1908 (2006).
    [CrossRef] [PubMed]
  12. N. A. Hagen, E. L. Dereniak, and D. T. Sass, “Maximizing the resolution of a CTIS instrument,” Proc. SPIE 6302, 63020L (2006).
    [CrossRef]
  13. N. A. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt. 47(28), F85–F95 (2008).
    [CrossRef] [PubMed]
  14. W. R. Johnson, D. W. Wilson, and G. Bearman, “All-reflective snapshot hyperspectral imager for ultraviolet and infrared applications,” Opt. Lett. 30(12), 1464–1466 (2005).
    [CrossRef] [PubMed]
  15. D. J. Brady and M. E. Gehm, “Compressive imaging spectrometers using coded apertures,” Proc. SPIE 6246, 105–115 (2006).
    [CrossRef]
  16. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15(21), 14013–14027 (2007).
    [CrossRef] [PubMed]
  17. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–B51 (2008).
    [CrossRef] [PubMed]
  18. A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009).
    [CrossRef] [PubMed]
  19. H. H. Barrett, “Editorial: limited-angle tomography for the nineties,” J. Nucl. 31, 1688–1692 (1990).
  20. A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
    [CrossRef]
  21. X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).
    [CrossRef] [PubMed]
  22. X. Cao, X. Tong, Q. Dai, and S. Lin, “High resolution multispectral video capture with a hybrid camera system,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2011), pp. 297–304.
    [CrossRef]

2011

X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).
[CrossRef] [PubMed]

2010

J. Murguia, G. Diaz, T. Reeves, R. Nelson, J. Mooney, F. Shepherd, G. Griffith, and D. Franco, “Applications of multispectral video,” Proc. SPIE 7780, 77800B (2010).
[CrossRef]

2009

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[CrossRef]

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009).
[CrossRef] [PubMed]

2008

2007

2006

W. R. Johnson, D. W. Wilson, and G. Bearman, “Spatial-spectral modulating snapshot hyperspectral imager,” Appl. Opt. 45(9), 1898–1908 (2006).
[CrossRef] [PubMed]

M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications,” Proc. SPIE 6062, 60620G (2006).
[CrossRef]

D. J. Brady and M. E. Gehm, “Compressive imaging spectrometers using coded apertures,” Proc. SPIE 6246, 105–115 (2006).
[CrossRef]

N. A. Hagen, E. L. Dereniak, and D. T. Sass, “Maximizing the resolution of a CTIS instrument,” Proc. SPIE 6302, 63020L (2006).
[CrossRef]

2005

2003

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face Recognition in Hyperspectral Images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003).
[CrossRef]

2001

W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, and B. Huang, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” Proc. SPIE 4151, 94–102 (2001).
[CrossRef]

C. M. Stellman, F. M. Olchowski, and J. V. Michalowicz, “WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment),” Proc. SPIE 4379, 339–346 (2001).
[CrossRef]

2000

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

1995

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[CrossRef]

M. R. Descour and E. L. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34(22), 4817–4826 (1995).
[CrossRef] [PubMed]

1990

H. H. Barrett, “Editorial: limited-angle tomography for the nineties,” J. Nucl. 31, 1688–1692 (1990).

1987

W. M. Porter and H. T. Enmark, “A system overview of the airborne visible/infrared imaging spectrometer(AVIRIS),” Proc. SPIE 834, 22–31 (1987).
[CrossRef]

Anderson, M. E.

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[CrossRef]

Barrett, H. H.

H. H. Barrett, “Editorial: limited-angle tomography for the nineties,” J. Nucl. 31, 1688–1692 (1990).

Basedow, R. W.

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[CrossRef]

Bearman, G.

Beaven, S.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[CrossRef]

Bodkin, A.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[CrossRef]

Brady, D.

Brady, D. J.

Cao, X.

X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).
[CrossRef] [PubMed]

X. Cao, X. Tong, Q. Dai, and S. Lin, “High resolution multispectral video capture with a hybrid camera system,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2011), pp. 297–304.
[CrossRef]

Carmer, D. C.

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[CrossRef]

Dai, Q.

X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).
[CrossRef] [PubMed]

X. Cao, X. Tong, Q. Dai, and S. Lin, “High resolution multispectral video capture with a hybrid camera system,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2011), pp. 297–304.
[CrossRef]

Daly, J.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[CrossRef]

Dereniak, E. L.

Descour, M. R.

Diaz, G.

J. Murguia, G. Diaz, T. Reeves, R. Nelson, J. Mooney, F. Shepherd, G. Griffith, and D. Franco, “Applications of multispectral video,” Proc. SPIE 7780, 77800B (2010).
[CrossRef]

Du, H.

X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).
[CrossRef] [PubMed]

Enmark, H. T.

W. M. Porter and H. T. Enmark, “A system overview of the airborne visible/infrared imaging spectrometer(AVIRIS),” Proc. SPIE 834, 22–31 (1987).
[CrossRef]

Franco, D.

J. Murguia, G. Diaz, T. Reeves, R. Nelson, J. Mooney, F. Shepherd, G. Griffith, and D. Franco, “Applications of multispectral video,” Proc. SPIE 7780, 77800B (2010).
[CrossRef]

Fukuda, H.

M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications,” Proc. SPIE 6062, 60620G (2006).
[CrossRef]

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

Gehm, M. E.

Griffith, G.

J. Murguia, G. Diaz, T. Reeves, R. Nelson, J. Mooney, F. Shepherd, G. Griffith, and D. Franco, “Applications of multispectral video,” Proc. SPIE 7780, 77800B (2010).
[CrossRef]

Hagen, N. A.

N. A. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt. 47(28), F85–F95 (2008).
[CrossRef] [PubMed]

N. A. Hagen, E. L. Dereniak, and D. T. Sass, “Maximizing the resolution of a CTIS instrument,” Proc. SPIE 6302, 63020L (2006).
[CrossRef]

Haneishi, H.

M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications,” Proc. SPIE 6062, 60620G (2006).
[CrossRef]

Harrison, F. W.

W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, and B. Huang, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” Proc. SPIE 4151, 94–102 (2001).
[CrossRef]

Healey, G.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face Recognition in Hyperspectral Images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003).
[CrossRef]

Huang, B.

W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, and B. Huang, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” Proc. SPIE 4151, 94–102 (2001).
[CrossRef]

Huang, H. L.

W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, and B. Huang, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” Proc. SPIE 4151, 94–102 (2001).
[CrossRef]

Iwama, R.

M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications,” Proc. SPIE 6062, 60620G (2006).
[CrossRef]

John, R.

Johnson, W. R.

Kanazawa, H.

M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications,” Proc. SPIE 6062, 60620G (2006).
[CrossRef]

Kishimoto, J.

M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications,” Proc. SPIE 6062, 60620G (2006).
[CrossRef]

Larar, A. M.

W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, and B. Huang, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” Proc. SPIE 4151, 94–102 (2001).
[CrossRef]

Lin, S.

X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).
[CrossRef] [PubMed]

X. Cao, X. Tong, Q. Dai, and S. Lin, “High resolution multispectral video capture with a hybrid camera system,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2011), pp. 297–304.
[CrossRef]

Michalowicz, J. V.

C. M. Stellman, F. M. Olchowski, and J. V. Michalowicz, “WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment),” Proc. SPIE 4379, 339–346 (2001).
[CrossRef]

Mooney, J.

J. Murguia, G. Diaz, T. Reeves, R. Nelson, J. Mooney, F. Shepherd, G. Griffith, and D. Franco, “Applications of multispectral video,” Proc. SPIE 7780, 77800B (2010).
[CrossRef]

Murguia, J.

J. Murguia, G. Diaz, T. Reeves, R. Nelson, J. Mooney, F. Shepherd, G. Griffith, and D. Franco, “Applications of multispectral video,” Proc. SPIE 7780, 77800B (2010).
[CrossRef]

Nelson, R.

J. Murguia, G. Diaz, T. Reeves, R. Nelson, J. Mooney, F. Shepherd, G. Griffith, and D. Franco, “Applications of multispectral video,” Proc. SPIE 7780, 77800B (2010).
[CrossRef]

Norton, A.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[CrossRef]

Ohyama, N.

M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications,” Proc. SPIE 6062, 60620G (2006).
[CrossRef]

Olchowski, F. M.

C. M. Stellman, F. M. Olchowski, and J. V. Michalowicz, “WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment),” Proc. SPIE 4379, 339–346 (2001).
[CrossRef]

Pan, Z.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face Recognition in Hyperspectral Images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003).
[CrossRef]

Pitsianis, N. P.

Porter, W. M.

W. M. Porter and H. T. Enmark, “A system overview of the airborne visible/infrared imaging spectrometer(AVIRIS),” Proc. SPIE 834, 22–31 (1987).
[CrossRef]

Prasad, M.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face Recognition in Hyperspectral Images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003).
[CrossRef]

Reeves, T.

J. Murguia, G. Diaz, T. Reeves, R. Nelson, J. Mooney, F. Shepherd, G. Griffith, and D. Franco, “Applications of multispectral video,” Proc. SPIE 7780, 77800B (2010).
[CrossRef]

Revercomb, H. E.

W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, and B. Huang, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” Proc. SPIE 4151, 94–102 (2001).
[CrossRef]

Sass, D. T.

N. A. Hagen, E. L. Dereniak, and D. T. Sass, “Maximizing the resolution of a CTIS instrument,” Proc. SPIE 6302, 63020L (2006).
[CrossRef]

Schulz, T. J.

Sheinis, A.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[CrossRef]

Shepherd, F.

J. Murguia, G. Diaz, T. Reeves, R. Nelson, J. Mooney, F. Shepherd, G. Griffith, and D. Franco, “Applications of multispectral video,” Proc. SPIE 7780, 77800B (2010).
[CrossRef]

Smith, W. L.

W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, and B. Huang, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” Proc. SPIE 4151, 94–102 (2001).
[CrossRef]

Stellman, C. M.

C. M. Stellman, F. M. Olchowski, and J. V. Michalowicz, “WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment),” Proc. SPIE 4379, 339–346 (2001).
[CrossRef]

Sun, X.

Tong, X.

X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).
[CrossRef] [PubMed]

X. Cao, X. Tong, Q. Dai, and S. Lin, “High resolution multispectral video capture with a hybrid camera system,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2011), pp. 297–304.
[CrossRef]

Tromberg, B.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face Recognition in Hyperspectral Images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003).
[CrossRef]

Tsuchida, M.

M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications,” Proc. SPIE 6062, 60620G (2006).
[CrossRef]

Wagadarikar, A.

Wagadarikar, A. A.

Weinheimer, J.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[CrossRef]

Willett, R.

Willett, R. M.

Wilson, D. W.

Yamaguchi, M.

M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications,” Proc. SPIE 6062, 60620G (2006).
[CrossRef]

Zhou, D. K.

W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, and B. Huang, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” Proc. SPIE 4151, 94–102 (2001).
[CrossRef]

Appl. Opt.

IEEE Trans. Pattern Anal. Mach. Intell.

X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).
[CrossRef] [PubMed]

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face Recognition in Hyperspectral Images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003).
[CrossRef]

J. Nucl.

H. H. Barrett, “Editorial: limited-angle tomography for the nineties,” J. Nucl. 31, 1688–1692 (1990).

Opt. Express

Opt. Lett.

Proc. SPIE

J. Murguia, G. Diaz, T. Reeves, R. Nelson, J. Mooney, F. Shepherd, G. Griffith, and D. Franco, “Applications of multispectral video,” Proc. SPIE 7780, 77800B (2010).
[CrossRef]

N. A. Hagen, E. L. Dereniak, and D. T. Sass, “Maximizing the resolution of a CTIS instrument,” Proc. SPIE 6302, 63020L (2006).
[CrossRef]

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[CrossRef]

W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, and B. Huang, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” Proc. SPIE 4151, 94–102 (2001).
[CrossRef]

C. M. Stellman, F. M. Olchowski, and J. V. Michalowicz, “WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment),” Proc. SPIE 4379, 339–346 (2001).
[CrossRef]

W. M. Porter and H. T. Enmark, “A system overview of the airborne visible/infrared imaging spectrometer(AVIRIS),” Proc. SPIE 834, 22–31 (1987).
[CrossRef]

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: Implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[CrossRef]

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications,” Proc. SPIE 6062, 60620G (2006).
[CrossRef]

D. J. Brady and M. E. Gehm, “Compressive imaging spectrometers using coded apertures,” Proc. SPIE 6246, 105–115 (2006).
[CrossRef]

Other

R. P. Lin, B. R. Dennis, and A. O. Benz, eds., The Reuven Ramaty High-Energy Solar Spectroscopic Imager(RHESSI)-Mission Description and Early Results (Springer, 2003).

X. Cao, X. Tong, Q. Dai, and S. Lin, “High resolution multispectral video capture with a hybrid camera system,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2011), pp. 297–304.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Three-dimensional hyperspectral data cubes.

Fig. 2
Fig. 2

(a) Overview of the optical design. (b) Dispersion comparison of the traditional prism and Amici prism. (c) Subsample process of the occlusion mask and the occlusion mask’s configuration.

Fig. 3
Fig. 3

(a) Optical path in an Amici prism: y is the F1 prism angle, ω is the K7 prism angle, α is the incident angle and β is the angle of the F1 prism’s surface with the image plane, α' is the outgoing ray angle, red line is the maximum wavelength in the angle of refraction of the outgoing ray and purple line is the minimum wavelength. (b) Spectrum width in our proposed system with different incident angle α.

Fig. 4
Fig. 4

(a) Optical path of HVIS: D1 is the distance between the image plane and the mask plane, D2 is the distance between the spot light and the mask plane. (b) Optical path of AHVIS: the distance u between spot light and objective lens is 60 cm, then the image distance v is 20 cm, the focal length of the relay lens f2 is 10 cm, the image plane of objective lens and the focal plane of relay lens are coincident.

Fig. 5
Fig. 5

(a) Schematic map of light transmitting through occlusion mask’s slit. (b) Curve of r and the reduced light energy ratio k2 of the occlusion mask, when r is 1, no light energy is occluded.

Fig. 6
Fig. 6

Physical map of the proposed system, it consists of an objective lens, occlusion mask, a relay lens, an Amici prism, gray scale camera and an RGB camera.

Fig. 7
Fig. 7

The light throughput increases with enlarging the aperture size of the gray scale camera, with the same aperture size, the light throughput is improved in AHVIS, the measured light throughput in AHVIS coincides with the theoretical value well.

Tables (1)

Tables Icon

Table 1 Error ratio comparison of the two system

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

α ' = arc sin ( n 2 ( λ ) sin ( y arc sin n 1 ( λ ) sin ( ω arc sin ( sin ( α ) n 1 ( λ ) ) ) n 2 ( λ ) ) )
R s p e c = W ε = f ( tan ( α ' ( λ e ) β ) tan ( α ' ( λ s ) β ) ) ε
I ' ( c ) = k ' 2 k ' 4 k ' 5 I ( o ) = 0.38 × 1.46 × k ' 5 I ( o ) = 0.5548 k ' 5 I ( o )
I(c)=I(o) i=1 5 ki
k 2 = 1 2 × ( arc cos ( r ) r 1 r 2 π )
d 1 = D v u
DOF 2H s 2 H 2 s 2
H f 2 Nc
DOF 2H s 2 H 2 s 2 0
H 2 s 2 0
( f 2 Nc ) 2 s 2 0
N f 2 sc
I(c)=I(o) i=1 5 ki =0.7514k5I(o)

Metrics