Abstract

With high-determinacy and no subsurface damage, Magnetorheological Finishing (MRF) has become an important tool in fabricating high-precision optics. But for large mirrors, the application of MRF is restricted by its small removal function and low material removal rate. In order to improve the material removal rate, shorten the processing cycle, we proposed a new MRF concept, named Belt-MRF to expand the application of MRF to large mirrors and made a prototype with a large remove function, using a belt instead of a very large polishing wheel to expand the polishing length. A series of experimental results on Silicon carbide (SiC) and BK 7 specimens and fabrication simulation verified that the Belt-MRF has high material removal rates, stable removal function and high convergence efficiency which makes it a promising technology for processing large aperture optical elements.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. I. Kordonsky, I. V. Prokhorov, G. Gorodkin, S. D. Jacobs, B. Puchebner, and D. Pietrowski, “Magnetorheological Finishing,” Opt. Photon. News 4(12), 16–17 (1993).
    [CrossRef]
  2. D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
    [CrossRef]
  3. D. Golini, “Precision optics manufacturing using magnetorheological finishing,” Proc. SPIE CR67, 251–274 (1997).
  4. F. Zhang, J. Yu, and X. Zhang, “Magnetorheological finishing technology,” Opt. Precis. Eng. 7(5), 1–8 (1999).
  5. S. D. Jacobs, W. I. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, and T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. Patent No. 5,795,212 (1998).
  6. D. Golini, G. Schneider, P. Flug, and M. Demarco, “The Ultimate Flexible optics manufacturing technology: Magnetorheological Finishing,” Opt. Photon. News 12(10), 20–24 (2001).
    [CrossRef]
  7. J. E. DeGroote, A. E. Marino, J. P. Wilson, A. L. Bishop, J. C. Lambropoulos, and S. D. Jacobs, “Removal rate model for magnetorheological finishing of glass,” Appl. Opt. 46(32), 7927–7941 (2007).
    [CrossRef] [PubMed]
  8. A. B. Shorey, K. M. Kwong, K. M. Johnson, and S. D. Jacobs, “Nanoindentation Hardness of Particles Used in Magnetorheological Finishing (MRF),” Appl. Opt. 39(28), 5194–5204 (2000).
    [CrossRef] [PubMed]
  9. X. Luo, K. Ren, H. Hu, L. Zheng and X. Zhang, “Magnetic rheological polishing device suitable for large aperture optical processing” CN201410120264.0 [P]. 2014–03–28.
  10. A. B. Shorey, S. D. Jacobs, W. I. Kordonski, and R. F. Gans, “Experiments and Observations Regarding the Mechanisms of Glass Removal in Magnetorheological Finishing,” Appl. Opt. 40(1), 20–33 (2001).
    [CrossRef] [PubMed]
  11. F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214–256 (1927).
  12. C. Miao, J. C. Lambropoulos, and S. D. Jacobs, “Process parameter effects on material removal in magnetorheological finishing of borosilicate glass,” Appl. Opt. 49(10), 1951–1963 (2010).
    [CrossRef] [PubMed]
  13. Y. Dai, C. Song, X. Peng, and F. Shi, “Calibration and prediction of removal function in magnetorheological finishing,” Appl. Opt. 49(3), 298–306 (2010).
    [CrossRef] [PubMed]
  14. M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659–670 (2005).
  15. A. Kulawiec, W. Kordonski, and S. Gorodkin, “New Approaches to MRF,” OFT OM3D.3 (Optical Society of America, 2012).
  16. J. S. Johnson and K. Grobsky, Zygo CorporationD. J. Bray and POCO Graphite Inc., “Rapid fabrication of lightweight silicon carbide mirrors,” Proc. SPIE 4771, 243–253 (2002).

2010 (2)

2007 (1)

2005 (1)

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659–670 (2005).

2002 (1)

J. S. Johnson and K. Grobsky, Zygo CorporationD. J. Bray and POCO Graphite Inc., “Rapid fabrication of lightweight silicon carbide mirrors,” Proc. SPIE 4771, 243–253 (2002).

J. S. Johnson and K. Grobsky, Zygo CorporationD. J. Bray and POCO Graphite Inc., “Rapid fabrication of lightweight silicon carbide mirrors,” Proc. SPIE 4771, 243–253 (2002).

2001 (2)

A. B. Shorey, S. D. Jacobs, W. I. Kordonski, and R. F. Gans, “Experiments and Observations Regarding the Mechanisms of Glass Removal in Magnetorheological Finishing,” Appl. Opt. 40(1), 20–33 (2001).
[CrossRef] [PubMed]

D. Golini, G. Schneider, P. Flug, and M. Demarco, “The Ultimate Flexible optics manufacturing technology: Magnetorheological Finishing,” Opt. Photon. News 12(10), 20–24 (2001).
[CrossRef]

2000 (1)

1999 (2)

D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
[CrossRef]

F. Zhang, J. Yu, and X. Zhang, “Magnetorheological finishing technology,” Opt. Precis. Eng. 7(5), 1–8 (1999).

1997 (1)

D. Golini, “Precision optics manufacturing using magnetorheological finishing,” Proc. SPIE CR67, 251–274 (1997).

1993 (1)

W. I. Kordonsky, I. V. Prokhorov, G. Gorodkin, S. D. Jacobs, B. Puchebner, and D. Pietrowski, “Magnetorheological Finishing,” Opt. Photon. News 4(12), 16–17 (1993).
[CrossRef]

1927 (1)

F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214–256 (1927).

Bishop, A. L.

Bray, D. J.

J. S. Johnson and K. Grobsky, Zygo CorporationD. J. Bray and POCO Graphite Inc., “Rapid fabrication of lightweight silicon carbide mirrors,” Proc. SPIE 4771, 243–253 (2002).

Dai, Y.

DeGroote, J. E.

Demarco, M.

D. Golini, G. Schneider, P. Flug, and M. Demarco, “The Ultimate Flexible optics manufacturing technology: Magnetorheological Finishing,” Opt. Photon. News 12(10), 20–24 (2001).
[CrossRef]

Dumas, P.

D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
[CrossRef]

Flug, P.

D. Golini, G. Schneider, P. Flug, and M. Demarco, “The Ultimate Flexible optics manufacturing technology: Magnetorheological Finishing,” Opt. Photon. News 12(10), 20–24 (2001).
[CrossRef]

Gans, R. F.

Geiss, A.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659–670 (2005).

Golini, D.

D. Golini, G. Schneider, P. Flug, and M. Demarco, “The Ultimate Flexible optics manufacturing technology: Magnetorheological Finishing,” Opt. Photon. News 12(10), 20–24 (2001).
[CrossRef]

D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
[CrossRef]

D. Golini, “Precision optics manufacturing using magnetorheological finishing,” Proc. SPIE CR67, 251–274 (1997).

Gorodkin, G.

W. I. Kordonsky, I. V. Prokhorov, G. Gorodkin, S. D. Jacobs, B. Puchebner, and D. Pietrowski, “Magnetorheological Finishing,” Opt. Photon. News 4(12), 16–17 (1993).
[CrossRef]

Grobsky, K.

J. S. Johnson and K. Grobsky, Zygo CorporationD. J. Bray and POCO Graphite Inc., “Rapid fabrication of lightweight silicon carbide mirrors,” Proc. SPIE 4771, 243–253 (2002).

Hogan, S. J.

D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
[CrossRef]

Jacobs, S. D.

Johnson, J. S.

J. S. Johnson and K. Grobsky, Zygo CorporationD. J. Bray and POCO Graphite Inc., “Rapid fabrication of lightweight silicon carbide mirrors,” Proc. SPIE 4771, 243–253 (2002).

Johnson, K. M.

Kordonski, W. I.

A. B. Shorey, S. D. Jacobs, W. I. Kordonski, and R. F. Gans, “Experiments and Observations Regarding the Mechanisms of Glass Removal in Magnetorheological Finishing,” Appl. Opt. 40(1), 20–33 (2001).
[CrossRef] [PubMed]

D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
[CrossRef]

Kordonsky, W. I.

W. I. Kordonsky, I. V. Prokhorov, G. Gorodkin, S. D. Jacobs, B. Puchebner, and D. Pietrowski, “Magnetorheological Finishing,” Opt. Photon. News 4(12), 16–17 (1993).
[CrossRef]

Kwong, K. M.

Lambropoulos, J. C.

Marino, A. E.

Miao, C.

Peng, X.

Pietrowski, D.

W. I. Kordonsky, I. V. Prokhorov, G. Gorodkin, S. D. Jacobs, B. Puchebner, and D. Pietrowski, “Magnetorheological Finishing,” Opt. Photon. News 4(12), 16–17 (1993).
[CrossRef]

Pitschke, E.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659–670 (2005).

Preston, F. W.

F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214–256 (1927).

Prokhorov, I. V.

W. I. Kordonsky, I. V. Prokhorov, G. Gorodkin, S. D. Jacobs, B. Puchebner, and D. Pietrowski, “Magnetorheological Finishing,” Opt. Photon. News 4(12), 16–17 (1993).
[CrossRef]

Puchebner, B.

W. I. Kordonsky, I. V. Prokhorov, G. Gorodkin, S. D. Jacobs, B. Puchebner, and D. Pietrowski, “Magnetorheological Finishing,” Opt. Photon. News 4(12), 16–17 (1993).
[CrossRef]

Rascher, R.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659–670 (2005).

Schinhaerl, M.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659–670 (2005).

Schneider, G.

D. Golini, G. Schneider, P. Flug, and M. Demarco, “The Ultimate Flexible optics manufacturing technology: Magnetorheological Finishing,” Opt. Photon. News 12(10), 20–24 (2001).
[CrossRef]

Shi, F.

Shorey, A. B.

Smith, G.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659–670 (2005).

Smith, L.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659–670 (2005).

Song, C.

Sperber, P.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659–670 (2005).

Stamp, R.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659–670 (2005).

Wilson, J. P.

Yu, J.

F. Zhang, J. Yu, and X. Zhang, “Magnetorheological finishing technology,” Opt. Precis. Eng. 7(5), 1–8 (1999).

Zhang, F.

F. Zhang, J. Yu, and X. Zhang, “Magnetorheological finishing technology,” Opt. Precis. Eng. 7(5), 1–8 (1999).

Zhang, X.

F. Zhang, J. Yu, and X. Zhang, “Magnetorheological finishing technology,” Opt. Precis. Eng. 7(5), 1–8 (1999).

Appl. Opt. (5)

J. Soc. Glass Technol. (1)

F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214–256 (1927).

Opt. Photon. News (2)

D. Golini, G. Schneider, P. Flug, and M. Demarco, “The Ultimate Flexible optics manufacturing technology: Magnetorheological Finishing,” Opt. Photon. News 12(10), 20–24 (2001).
[CrossRef]

W. I. Kordonsky, I. V. Prokhorov, G. Gorodkin, S. D. Jacobs, B. Puchebner, and D. Pietrowski, “Magnetorheological Finishing,” Opt. Photon. News 4(12), 16–17 (1993).
[CrossRef]

Opt. Precis. Eng. (1)

F. Zhang, J. Yu, and X. Zhang, “Magnetorheological finishing technology,” Opt. Precis. Eng. 7(5), 1–8 (1999).

Proc. SPIE (4)

D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80–91 (1999).
[CrossRef]

D. Golini, “Precision optics manufacturing using magnetorheological finishing,” Proc. SPIE CR67, 251–274 (1997).

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659–670 (2005).

J. S. Johnson and K. Grobsky, Zygo CorporationD. J. Bray and POCO Graphite Inc., “Rapid fabrication of lightweight silicon carbide mirrors,” Proc. SPIE 4771, 243–253 (2002).

Other (3)

A. Kulawiec, W. Kordonski, and S. Gorodkin, “New Approaches to MRF,” OFT OM3D.3 (Optical Society of America, 2012).

X. Luo, K. Ren, H. Hu, L. Zheng and X. Zhang, “Magnetic rheological polishing device suitable for large aperture optical processing” CN201410120264.0 [P]. 2014–03–28.

S. D. Jacobs, W. I. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, and T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. Patent No. 5,795,212 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1

Schematic of the MRF contact zone [10].

Fig. 2
Fig. 2

The geometric model.

Fig. 3
Fig. 3

Schematic diagram of Belt-MRF.

Fig. 4
Fig. 4

Core part of Belt-MRF.

Fig. 5
Fig. 5

Magnet and box.

Fig. 6
Fig. 6

Magnetic induction intensity distribution in the y-z plane.

Fig. 7
Fig. 7

Magnetic field B distribution across the belt.

Fig. 8
Fig. 8

Magnetic induction intensity distribution in the x-z plane.

Fig. 9
Fig. 9

Measurement system.

Fig. 10
Fig. 10

Magnetic induction intensity distribution along y axis without belt.

Fig. 11
Fig. 11

Gradient of magnetic induction intensity distribution along y axis.

Fig. 12
Fig. 12

Measured paths.

Fig. 13
Fig. 13

Magnetic induction intensity distribution and its gradient we calculated along path 1.

Fig. 14
Fig. 14

Magnetic induction intensity distribution along path 2 and path 3.

Fig. 15
Fig. 15

Insertion depth experimental interferogram (λ = 6328 Å).

Fig. 16
Fig. 16

Polishing effects on insertion depth (VRR error ± 0.002 mm3/min, Ra error ± 8 Å).

Fig. 17
Fig. 17

Belt speed experimental interferogram (λ = 6328 Å).

Fig. 18
Fig. 18

Polishing effects on belt speed (VRR error ± 0.002 mm3/min, Ra error ± 8 Å).

Fig. 19
Fig. 19

Roughness of SiC (Arrow direction is the movement direction of belt).

Fig. 20
Fig. 20

Removal function of BK 7 (λ = 6328 Å, 20 s).

Fig. 21
Fig. 21

Stability and linearity of removal function of BK 7 (λ = 6328 Å).

Fig. 22
Fig. 22

Roughness of BK 7 (Arrow direction is the movement direction of belt).

Fig. 23
Fig. 23

Initial faceshape of ϕ600 mm flat.

Fig. 24
Fig. 24

Belt-MRF simulation.

Tables (3)

Tables Icon

Table 1 Experimental Parameter: Insertion Depth (SiC)

Tables Icon

Table 2 Experimental Parameter: Belt Speed (SiC)

Tables Icon

Table 3 MRF Device Comparison*

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d= [ R 2 (Rh) 2 ] 1/2 = (2Rh h 2 ) 1/2 .
d= (2rh) 1/2
L=kd
F=(m)B
F=m v 2 /r
dz/dt= C p (P/A)(ds/dt)
ds/dt=v

Metrics