Abstract

We present numerical modeling of mid-infrared (MIR) supercontinuum generation (SCG) in dispersion-optimized chalcogenide (CHALC) step-index fibres (SIFs) with exceptionally high numerical aperture (NA) around one, pumped with mode-locked praseodymium-doped (Pr3+) chalcogenide fibre lasers. The 4.5um laser is assumed to have a repetition rate of 4MHz with 50ps long pulses having a peak power of 4.7kW. A thorough fibre design optimisation was conducted using measured material dispersion (As-Se/Ge-As-Se) and measured fibre loss obtained in fabricated fibre of the same materials. The loss was below 2.5dB/m in the 3.3–9.4μm region. Fibres with 8 and 10μm core diameters generated an SC out to 12.5 and 10.7μm in less than 2m of fibre when pumped with 0.75 and 1kW, respectively. Larger core fibres with 20μm core diameters for potential higher power handling generated an SC out to 10.6μm for the highest NA considered but required pumping at 4.7kW as well as up to 3m of fibre to compensate for the lower nonlinearities. The amount of power converted into the 8–10μm band was 7.5 and 8.8mW for the 8 and 10μm fibres, respectively. For the 20μm core fibres up to 46mW was converted.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
    [CrossRef] [PubMed]
  2. C. A. Michaels, T. Masiello, and P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63, 538–543 (2009).
    [CrossRef] [PubMed]
  3. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
    [CrossRef] [PubMed]
  4. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
    [CrossRef] [PubMed]
  5. C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
    [CrossRef]
  6. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber,” Opt. Lett. 34, 2015–2017 (2009).
    [CrossRef] [PubMed]
  7. P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum - broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
    [CrossRef]
  8. J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
    [CrossRef] [PubMed]
  9. J. Swiderski and M. Michalska, “Over three-octave spanning supercontinuum generated in a fluoride fiber pumped by Er & Er:Yb-doped and Tm-doped fiber amplifiers,” Opt. Laser Technol. 52, 75–80 (2013).
    [CrossRef]
  10. P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), p. JTh5A.9.
    [CrossRef]
  11. A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2μm,” Opt. Express 21, 24281–24287 (2013).
    [CrossRef] [PubMed]
  12. J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Maze, “High power supercontinuum generation in fluoride fibers pumped by 2μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
    [CrossRef]
  13. R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).
    [CrossRef]
  14. V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
    [CrossRef]
  15. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
    [CrossRef]
  16. E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
    [CrossRef]
  17. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
    [CrossRef] [PubMed]
  18. R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
    [CrossRef]
  19. W. Yuan, “2–10μm mid-infrared supercontinuum generation in As2Se3 photonics crystal fiber,” Laser Phys. Lett. 10, 095107 (2013).
    [CrossRef]
  20. C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21, 29488–29504 (2013).
    [CrossRef]
  21. M. Bache, H. Guo, and B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 1647–1657 (2013).
    [CrossRef]
  22. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
    [CrossRef]
  23. Y. Yu, X. Gai, D.-Y. C. P. Ma, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A stable broadband quasi continuum mid-infrared supercontinuum generated in chalcogenide glass waveguide,” Laser Photon. Rev., to be published (2014).
    [CrossRef]
  24. P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
    [CrossRef]
  25. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
    [CrossRef] [PubMed]
  26. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
    [CrossRef]
  27. I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
    [CrossRef]
  28. I. D. Aggarwal, L. E. Busse, L. B. Shaw, B. Cole, and J. S. Sanghera, Proceedings of the Diode Laser Technology Review, Albuquerque, NM (1998).
  29. J. Sanghera and I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
    [CrossRef]
  30. Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
    [CrossRef]
  31. Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36, 1076–1082 (2014).
    [CrossRef]
  32. H. G. Dantanarayana, N. M. Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4, 1444–1455 (2014).
    [CrossRef]
  33. Amorphous Materials Inc., “Chalcogenide glasses,” available at http://www.amorphousmaterials.com/products/ (2013).
  34. A. Bornstein, N. Croitoru, and E. Marom, “Chalcogenide infrared As2−xSe3+x glass fibers,” J. Non-Cryst. Solids 74, 57–65 (1985).
    [CrossRef]
  35. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
    [CrossRef]
  36. M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15, 855–858 (1974).
    [CrossRef]
  37. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25, 1645–1654 (2008).
    [CrossRef]
  38. J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express 21, 10764–10771 (2013).
    [CrossRef] [PubMed]
  39. S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354, 3418–3427 (2008).
    [CrossRef]
  40. T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
    [CrossRef]
  41. C. T. Hach, K. Cerqua-Richardson, J. R. Varner, and W. C. LaCourse, “Density and microhardness of As-Se glasses and glass fibers,” J. Non-Cryst. Solids 209, 159–165 (1997).
    [CrossRef]
  42. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
    [CrossRef]
  43. U. Møller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order raman lines cross into anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
    [CrossRef]
  44. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
    [CrossRef] [PubMed]
  45. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  46. R. T. White and T. M. Monro, “Cascaded raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36, 2351–2353 (2011).
    [CrossRef] [PubMed]
  47. J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. Loh, D. J. Richardson, and M. Ibsen, “1.06 μm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient,” J. Lightwave Technol. 29, 3461–3469 (2011).
    [CrossRef]
  48. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [CrossRef] [PubMed]
  49. P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation at 1300 nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett. 33, 621–623 (2008).
    [CrossRef] [PubMed]
  50. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
    [CrossRef] [PubMed]
  51. M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A 118, 32141–32150 (2010).
  52. I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express 21, 32141–32150 (2013).
    [CrossRef]
  53. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [CrossRef]
  54. C. Moynihan, P. Macedo, M. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17, 369–385 (1975).
    [CrossRef]

2014 (5)

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Maze, “High power supercontinuum generation in fluoride fibers pumped by 2μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
[CrossRef]

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[CrossRef]

Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36, 1076–1082 (2014).
[CrossRef]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[CrossRef] [PubMed]

H. G. Dantanarayana, N. M. Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4, 1444–1455 (2014).
[CrossRef]

2013 (14)

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
[CrossRef] [PubMed]

J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express 21, 10764–10771 (2013).
[CrossRef] [PubMed]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
[CrossRef]

M. Bache, H. Guo, and B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 1647–1657 (2013).
[CrossRef]

I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
[CrossRef]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2μm,” Opt. Express 21, 24281–24287 (2013).
[CrossRef] [PubMed]

C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21, 29488–29504 (2013).
[CrossRef]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[CrossRef]

I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express 21, 32141–32150 (2013).
[CrossRef]

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).
[CrossRef]

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[CrossRef]

J. Swiderski and M. Michalska, “Over three-octave spanning supercontinuum generated in a fluoride fiber pumped by Er & Er:Yb-doped and Tm-doped fiber amplifiers,” Opt. Laser Technol. 52, 75–80 (2013).
[CrossRef]

W. Yuan, “2–10μm mid-infrared supercontinuum generation in As2Se3 photonics crystal fiber,” Laser Phys. Lett. 10, 095107 (2013).
[CrossRef]

U. Møller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order raman lines cross into anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[CrossRef]

2012 (6)

2011 (2)

2010 (4)

2009 (5)

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
[CrossRef] [PubMed]

C. A. Michaels, T. Masiello, and P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63, 538–543 (2009).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber,” Opt. Lett. 34, 2015–2017 (2009).
[CrossRef] [PubMed]

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

2008 (3)

2007 (1)

2004 (1)

2003 (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

2002 (1)

1999 (1)

J. Sanghera and I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

1997 (1)

C. T. Hach, K. Cerqua-Richardson, J. R. Varner, and W. C. LaCourse, “Density and microhardness of As-Se glasses and glass fibers,” J. Non-Cryst. Solids 209, 159–165 (1997).
[CrossRef]

1990 (1)

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

1985 (1)

A. Bornstein, N. Croitoru, and E. Marom, “Chalcogenide infrared As2−xSe3+x glass fibers,” J. Non-Cryst. Solids 74, 57–65 (1985).
[CrossRef]

1975 (1)

C. Moynihan, P. Macedo, M. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17, 369–385 (1975).
[CrossRef]

1974 (1)

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15, 855–858 (1974).
[CrossRef]

Abdel-Moneim, N.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[CrossRef]

Aggarwal, I.

J. Sanghera and I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

Aggarwal, I. D.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[CrossRef] [PubMed]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[CrossRef]

I. D. Aggarwal, L. E. Busse, L. B. Shaw, B. Cole, and J. S. Sanghera, Proceedings of the Diode Laser Technology Review, Albuquerque, NM (1998).

Agger, C.

Agger, C. S.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Alam, S. U.

Alam, S.-U.

Andersen, P. E.

Bache, M.

Bang, O.

H. G. Dantanarayana, N. M. Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4, 1444–1455 (2014).
[CrossRef]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[CrossRef] [PubMed]

U. Møller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order raman lines cross into anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[CrossRef]

I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
[CrossRef]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum - broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[CrossRef] [PubMed]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[CrossRef]

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation at 1300 nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett. 33, 621–623 (2008).
[CrossRef] [PubMed]

Baskiotis, C.

Benson, T.

Benson, T. M.

H. G. Dantanarayana, N. M. Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4, 1444–1455 (2014).
[CrossRef]

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[CrossRef]

Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36, 1076–1082 (2014).
[CrossRef]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[CrossRef]

Beres-Pawlik, E.

Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36, 1076–1082 (2014).
[CrossRef]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[CrossRef]

Bjarklev, A. O.

Bornstein, A.

A. Bornstein, N. Croitoru, and E. Marom, “Chalcogenide infrared As2−xSe3+x glass fibers,” J. Non-Cryst. Solids 74, 57–65 (1985).
[CrossRef]

Brilland, L.

Broeng, J.

Busse, L. E.

I. D. Aggarwal, L. E. Busse, L. B. Shaw, B. Cole, and J. S. Sanghera, Proceedings of the Diode Laser Technology Review, Albuquerque, NM (1998).

Cerqua-Richardson, K.

C. T. Hach, K. Cerqua-Richardson, J. R. Varner, and W. C. LaCourse, “Density and microhardness of As-Se glasses and glass fibers,” J. Non-Cryst. Solids 209, 159–165 (1997).
[CrossRef]

Chan, A.

Chau, A. H. L.

Chaudhari, C.

Chavez-Pirson, A.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).
[CrossRef]

Chen, K.

Cheng, M.-Y.

Choi, D.-Y.

Chu, P. M.

Churbanov, M. F.

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[CrossRef]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

Coen, S.

Cole, B.

I. D. Aggarwal, L. E. Busse, L. B. Shaw, B. Cole, and J. S. Sanghera, Proceedings of the Diode Laser Technology Review, Albuquerque, NM (1998).

Croitoru, N.

A. Bornstein, N. Croitoru, and E. Marom, “Chalcogenide infrared As2−xSe3+x glass fibers,” J. Non-Cryst. Solids 74, 57–65 (1985).
[CrossRef]

Dam, J. S.

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), p. JTh5A.9.
[CrossRef]

Dantanarayana, H.

Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36, 1076–1082 (2014).
[CrossRef]

Dantanarayana, H. G.

Debbarma, S.

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[CrossRef]

Y. Yu, X. Gai, D.-Y. C. P. Ma, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A stable broadband quasi continuum mid-infrared supercontinuum generated in chalcogenide glass waveguide,” Laser Photon. Rev., to be published (2014).
[CrossRef]

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

Dupont, S.

Eichhorn, M.

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Maze, “High power supercontinuum generation in fluoride fibers pumped by 2μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
[CrossRef]

Faber, E.

Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36, 1076–1082 (2014).
[CrossRef]

Falk, P.

Feehan, J. S.

Feng, X.

Freeman, M.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Freeman, M. J.

Frosz, M. H.

Furniss, D.

Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36, 1076–1082 (2014).
[CrossRef]

H. G. Dantanarayana, N. M. Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4, 1444–1455 (2014).
[CrossRef]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[CrossRef]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354, 3418–3427 (2008).
[CrossRef]

Gai, X.

Galvanauskas, A.

Gattass, R. R.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

Gawlik, W.

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A 118, 32141–32150 (2010).

Grabka, M.

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A 118, 32141–32150 (2010).

Guizard, S.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[CrossRef]

Guo, H.

Hach, C. T.

C. T. Hach, K. Cerqua-Richardson, J. R. Varner, and W. C. LaCourse, “Density and microhardness of As-Se glasses and glass fibers,” J. Non-Cryst. Solids 209, 159–165 (1997).
[CrossRef]

Hansen, K. P.

Harvey, J. D.

Hegde, R. S.

Heidt, A. M.

Hodelin, J.

Horak, P.

Howard, R.

C. Moynihan, P. Macedo, M. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17, 369–385 (1975).
[CrossRef]

Howard, R. E.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15, 855–858 (1974).
[CrossRef]

Hu, J.

Ibsen, M.

Islam, M.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Islam, M. N.

Johansen, M.

Keiding, S. R.

Kieleck, C.

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Maze, “High power supercontinuum generation in fluoride fibers pumped by 2μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
[CrossRef]

Kito, C.

Knight, J. C.

Konyukhov, A. I.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[CrossRef]

Kubat, I.

Kumar, M.

Kuzyutkina, Y. S.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[CrossRef]

LaCourse, W. C.

C. T. Hach, K. Cerqua-Richardson, J. R. Varner, and W. C. LaCourse, “Density and microhardness of As-Se glasses and glass fibers,” J. Non-Cryst. Solids 209, 159–165 (1997).
[CrossRef]

Leick, L.

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), p. JTh5A.9.
[CrossRef]

Lenz, G.

Leonhardt, R.

Li, Z.

Liao, M.

Loh, W.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

Luther-Davies, B.

Lyngsø, J. K.

Ma, D.-Y. C. P.

Y. Yu, X. Gai, D.-Y. C. P. Ma, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A stable broadband quasi continuum mid-infrared supercontinuum generated in chalcogenide glass waveguide,” Laser Photon. Rev., to be published (2014).
[CrossRef]

Ma, P.

Macedo, P.

C. Moynihan, P. Macedo, M. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17, 369–385 (1975).
[CrossRef]

Macedo, P. B.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15, 855–858 (1974).
[CrossRef]

Madden, S.

Madden, S. J.

Y. Yu, X. Gai, D.-Y. C. P. Ma, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A stable broadband quasi continuum mid-infrared supercontinuum generated in chalcogenide glass waveguide,” Laser Photon. Rev., to be published (2014).
[CrossRef]

Maklad, M.

C. Moynihan, P. Macedo, M. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17, 369–385 (1975).
[CrossRef]

Maklad, M. S.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15, 855–858 (1974).
[CrossRef]

Manzur, T.

Marom, E.

A. Bornstein, N. Croitoru, and E. Marom, “Chalcogenide infrared As2−xSe3+x glass fibers,” J. Non-Cryst. Solids 74, 57–65 (1985).
[CrossRef]

Masiello, T.

Mauricio, J.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Maze, G.

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Maze, “High power supercontinuum generation in fluoride fibers pumped by 2μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
[CrossRef]

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
[CrossRef] [PubMed]

Mazé, G.

Méchin, D.

Menyuk, C. R.

Mergo, P.

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A 118, 32141–32150 (2010).

Michaels, C. A.

Michalska, M.

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Maze, “High power supercontinuum generation in fluoride fibers pumped by 2μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
[CrossRef]

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
[CrossRef] [PubMed]

J. Swiderski and M. Michalska, “Over three-octave spanning supercontinuum generated in a fluoride fiber pumped by Er & Er:Yb-doped and Tm-doped fiber amplifiers,” Opt. Laser Technol. 52, 75–80 (2013).
[CrossRef]

Miller, C. A.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354, 3418–3427 (2008).
[CrossRef]

Mimura, Y.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Mohr, R.

C. Moynihan, P. Macedo, M. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17, 369–385 (1975).
[CrossRef]

Mohr, R. K.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15, 855–858 (1974).
[CrossRef]

Møller, U.

U. Møller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order raman lines cross into anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[CrossRef]

Møller, U. V.

Moneim, N. M.

Monro, T. M.

Moselund, P.

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), p. JTh5A.9.
[CrossRef]

Moselund, P. M.

Mouskeftaras, A.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[CrossRef]

Moynihan, C.

C. Moynihan, P. Macedo, M. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17, 369–385 (1975).
[CrossRef]

Moynihan, C. T.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15, 855–858 (1974).
[CrossRef]

Nakai, T.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Neelakandan, M.

Nguyen, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).
[CrossRef]

Nguyen, V. Q.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

Noda, Y.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Norimatsu, N.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Norwood, R. A.

Novotny, S.

Ohishi, Y.

Oladeji, A.

Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36, 1076–1082 (2014).
[CrossRef]

Pedersen, C.

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), p. JTh5A.9.
[CrossRef]

Petersen, C.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[CrossRef] [PubMed]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum - broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[CrossRef]

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), p. JTh5A.9.
[CrossRef]

Petersen, C. R.

Peyghambarian, N.

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

Poletti, F.

Poulain, M.

Price, J. H. V.

Pureza, P. C.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

Pustelny, S.

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A 118, 32141–32150 (2010).

Qin, G.

Ramsay, J.

Rhonehouse, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).
[CrossRef]

Richardson, D. J.

Rishøj, L.

Romanova, E. A.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[CrossRef]

Rottwitt, K.

Russell, P. St. J.

Sakr, H.

Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36, 1076–1082 (2014).
[CrossRef]

Sanghera, J.

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[CrossRef]

J. Sanghera and I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

Sanghera, J. S.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[CrossRef] [PubMed]

I. D. Aggarwal, L. E. Busse, L. B. Shaw, B. Cole, and J. S. Sanghera, Proceedings of the Diode Laser Technology Review, Albuquerque, NM (1998).

Savage, S. D.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354, 3418–3427 (2008).
[CrossRef]

Seddon, A.

Seddon, A. B.

H. G. Dantanarayana, N. M. Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4, 1444–1455 (2014).
[CrossRef]

Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36, 1076–1082 (2014).
[CrossRef]

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[CrossRef]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[CrossRef]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354, 3418–3427 (2008).
[CrossRef]

Shavrin, I.

Shaw, L. B.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[CrossRef] [PubMed]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[CrossRef]

I. D. Aggarwal, L. E. Busse, L. B. Shaw, B. Cole, and J. S. Sanghera, Proceedings of the Diode Laser Technology Review, Albuquerque, NM (1998).

Shi, J.

Shinbori, O.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Shiryaev, V. S.

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[CrossRef]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

Skorobogatiy, M.

Skorupski, K.

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A 118, 32141–32150 (2010).

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Slusher, R. E.

Smith, C.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).
[CrossRef]

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

Sojka, L.

Sójka, L.

Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36, 1076–1082 (2014).
[CrossRef]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[CrossRef]

Song, F.

Steffensen, H.

Sujecki, S.

Suzuki, T.

Swiderski, J.

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Maze, “High power supercontinuum generation in fluoride fibers pumped by 2μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
[CrossRef]

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
[CrossRef] [PubMed]

J. Swiderski and M. Michalska, “Over three-octave spanning supercontinuum generated in a fluoride fiber pumped by Er & Er:Yb-doped and Tm-doped fiber amplifiers,” Opt. Laser Technol. 52, 75–80 (2013).
[CrossRef]

Tang, Z.

Teh, P. S.

Terry, F. L.

Thapa, R.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).
[CrossRef]

Thøgersen, J.

Thomsen, C. L.

Thrane, L.

Tidemand-Lichtenberg, P.

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), p. JTh5A.9.
[CrossRef]

Ung, B.

Varner, J. R.

C. T. Hach, K. Cerqua-Richardson, J. R. Varner, and W. C. LaCourse, “Density and microhardness of As-Se glasses and glass fibers,” J. Non-Cryst. Solids 209, 159–165 (1997).
[CrossRef]

Wadsworth, W. J.

Wajnchold, B.

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A 118, 32141–32150 (2010).

Wang, R.

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
[CrossRef]

Y. Yu, X. Gai, D.-Y. C. P. Ma, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A stable broadband quasi continuum mid-infrared supercontinuum generated in chalcogenide glass waveguide,” Laser Photon. Rev., to be published (2014).
[CrossRef]

Wang, T.

Wei, C.

White, R. T.

Wiersma, K.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).
[CrossRef]

Winful, H. G.

Xia, C.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
[CrossRef] [PubMed]

Xu, Z.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Yan, X.

Yang, Z.

Yu, Y.

Yuan, W.

W. Yuan, “2–10μm mid-infrared supercontinuum generation in As2Se3 photonics crystal fiber,” Laser Phys. Lett. 10, 095107 (2013).
[CrossRef]

Zakel, A.

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Zhou, B.

Zhu, H.

Zhu, X.

Zong, J.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).
[CrossRef]

Acta Phys. Pol. A (1)

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A 118, 32141–32150 (2010).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Appl. Spectrosc. (1)

Electron. Lett. (1)

U. Møller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order raman lines cross into anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xia, Z. Xu, M. Islam, F. L. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Maze, “High power supercontinuum generation in fluoride fibers pumped by 2μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
[CrossRef]

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (6)

A. Bornstein, N. Croitoru, and E. Marom, “Chalcogenide infrared As2−xSe3+x glass fibers,” J. Non-Cryst. Solids 74, 57–65 (1985).
[CrossRef]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354, 3418–3427 (2008).
[CrossRef]

J. Sanghera and I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[CrossRef]

C. T. Hach, K. Cerqua-Richardson, J. R. Varner, and W. C. LaCourse, “Density and microhardness of As-Se glasses and glass fibers,” J. Non-Cryst. Solids 209, 159–165 (1997).
[CrossRef]

C. Moynihan, P. Macedo, M. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As2Se3 glass,” J. Non-Cryst. Solids 17, 369–385 (1975).
[CrossRef]

J. Opt. Soc. Am. B (6)

Laser Phys. Lett. (1)

W. Yuan, “2–10μm mid-infrared supercontinuum generation in As2Se3 photonics crystal fiber,” Laser Phys. Lett. 10, 095107 (2013).
[CrossRef]

Opt. Eng. (1)

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[CrossRef]

Opt. Express (12)

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[CrossRef] [PubMed]

B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
[CrossRef] [PubMed]

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
[CrossRef] [PubMed]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
[CrossRef] [PubMed]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2μm,” Opt. Express 21, 24281–24287 (2013).
[CrossRef] [PubMed]

C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21, 29488–29504 (2013).
[CrossRef]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[CrossRef]

I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express 21, 32141–32150 (2013).
[CrossRef]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[CrossRef] [PubMed]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[CrossRef] [PubMed]

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
[CrossRef] [PubMed]

J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express 21, 10764–10771 (2013).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

Opt. Laser Technol. (1)

J. Swiderski and M. Michalska, “Over three-octave spanning supercontinuum generated in a fluoride fiber pumped by Er & Er:Yb-doped and Tm-doped fiber amplifiers,” Opt. Laser Technol. 52, 75–80 (2013).
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (1)

Ł. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36, 1076–1082 (2014).
[CrossRef]

Opt. Mater. Express (4)

Proc. SPIE (2)

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).
[CrossRef]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum - broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Solid State Commun. (1)

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15, 855–858 (1974).
[CrossRef]

Other (5)

Amorphous Materials Inc., “Chalcogenide glasses,” available at http://www.amorphousmaterials.com/products/ (2013).

Y. Yu, X. Gai, D.-Y. C. P. Ma, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A stable broadband quasi continuum mid-infrared supercontinuum generated in chalcogenide glass waveguide,” Laser Photon. Rev., to be published (2014).
[CrossRef]

I. D. Aggarwal, L. E. Busse, L. B. Shaw, B. Cole, and J. S. Sanghera, Proceedings of the Diode Laser Technology Review, Albuquerque, NM (1998).

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), p. JTh5A.9.
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical properties of the CHALC glasses. (a) Refractive index (black) and dispersion (red) of bulk As40Se60 (As-Se) (solid), Ge11.5As24Se64.5 (Ge-As-Se) (dashed) [32], and AMTIR-2 As-Se (dash-dotted) [33]. (b) Large core (Dc=288μm) fibre loss measurement with different absorption bands indicated (solid black), and an idealised loss without the two strong O-H and H2O absorption bands at 2.9 and 6.3μm (dashed red) as well as AMTIR-2 As-Se bulk material absorption (dotted black) [33]. (c) NA = n core 2 n cladding 2 of a SIF with As-Se as core and Ge-As-Se as cladding.

Fig. 2
Fig. 2

(a) Dispersion for a SIF with NA=0.5 and core diameter of 5, 10, and 20μm. (b) Dispersion for a SIF with core diameter 10μm and NA of 0.2, 0.6 and 1.0.

Fig. 3
Fig. 3

Detailed analysis of fibre optical properties. (a) Fibre confinement loss edge λ3dB, (b) dispersion D at λp=4.5μm, and (c) nonlinearity γ at λp vs. core diameter for different NA. (d) Zero Dispersion Wavelengths for different core diameter and NA. The solid red line indicates the pump at 4.5μm and dotted red lines are the first three Raman Stokes lines based on the model by Ung et al. [44].

Fig. 4
Fig. 4

Ensemble averaged (five seed) MIR SC generated in CHALC SIFs with wavelength dependent NA of 1.0. (a) Generation of SC in the 8μm fibre. Top: SC output spectra for the full (black) and reduced (red) fibre loss profile at the end of the fibre. Middle: Contour plot of the SC as it developed over 2m. Bottom: Fibre dispersion. The λp, λZDW, and −20dB IR edge are given as dashed black, solid black, and solid red vertical lines, respectively. (b) The IR power (8–10μm band) (black) and IR edge (red) with the full (solid) and reduced (dashed-dotted) fibre loss profiles. Below is the total optical power for the full (solid) and reduced (circles) loss profiles. (c–d) Generated MIR SC in the Dc=10μm fibre with the same notation.

Fig. 5
Fig. 5

Ensemble averaged (five seed) MIR SC in CHALC SIFs with Dc=20μm and wavelength depended NA around one. (a) The generated SC when using P0=1kW and L=2m. Top: Output SC spectrum for the full (black) and reduced (red) loss profile. Middle: Contour plot of the SC as it developed over 2m. Bottom: Fibre dispersion. The λp, λZDW, and −20dB IR edge are given as dashed black, solid black, and solid red lines, respectively. (b) The IR power (8–10μm band) (black) and IR edge (red) with full (solid) and reduced (dash-dotted) loss profile. At the bottom is given the total optical power for the full (solid) and reduced (circles) loss profiles. (c–d) Generated MIR SC in the same fibre with a length of 2m and P0=4.7kW.

Fig. 6
Fig. 6

Ensemble averaged (five seed) MIR SC in CHALC SIFs with Dc=20μm with NA={0.5,0.8} and P0=4.7kW. (a) The SC spectrum in the fibre with NA=0.8 and the fibre length of L=2.25m. Middle: Contour plot of the SC as it developed over 2.25m. Top: Output SC spectrum for the full (black) and reduced (red) loss profile. Bottom: Fibre dispersion. The λp, λZDW, and −20dB IR edge as dashed black, solid black, and solid red lines, respectively. (b) IR power (8–10μm band) (black) and IR edge (red) with the full (solid) and reduced (dash-dotted) loss profile. At the bottom is given the total optical power for the full (solid) and reduced (circles) loss profiles. (c–d) Generated MIR SC in the NA=0.5 fibre with length L=3m.

Metrics