Abstract

A wavelength shift of the photonic band gap of 141 nm is obtained by electric switching of a partly polymerized chiral liquid crystal. The devices feature high reflectivity in the photonic band gap without any noticeable degradation or disruption and have response times of 50 µs and 20 µs for switching on and off. The device consists of a mixture of photo-polymerizable liquid crystal, non-reactive nematic liquid crystal and a chiral dopant that has been polymerized with UV light. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. De Gennes, The Physics of Liquid Crystals (Clarendon, 1974).
  2. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
    [CrossRef]
  3. V. A. Belyakov, “Low threshold DFB lasing at the edge and defect modes in chiral liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 279–308 (2008).
    [CrossRef]
  4. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
    [CrossRef]
  5. H. Shirvani-Mahdavi, E. Mohajerani, and S. T. Wu, “Circularly polarized high-efficiency cholesteric liquid crystal lasers with a tunable nematic phase retarder,” Opt. Express 18(5), 5021–5027 (2010).
    [CrossRef] [PubMed]
  6. A. D. Ford, S. M. Morris, and H. J. Coles, “Phototonics and lasing in liquid crystals,” Mater. Today 9(7-8), 36–42 (2006).
    [CrossRef]
  7. L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
    [CrossRef]
  8. Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with In-Plane Helix Alignment,” Jpn. J. Appl. Phys. 3, 102702 (2010).
  9. S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72(1-2), 227–232 (2012).
    [CrossRef]
  10. Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
    [CrossRef] [PubMed]
  11. K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl.Phys. Part 2 Lett 42(Part 2, No. 12B), L1523–L1525 (2003).
    [CrossRef]
  12. L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
    [CrossRef]
  13. S. Furumi and N. Tamaoki, “Glass-Forming Cholesteric Liquid Crystal Oligomers for New Tunable Solid-State Laser,” Adv. Mater. 22(8), 886–891 (2010).
    [CrossRef] [PubMed]
  14. S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
    [CrossRef]
  15. G. S. Chilaya, “Light-controlled change in the helical pitch and broadband tunable cholesteric liquid-crystal lasers,” Crystallogr. Rep. 51(S1), S108–S118 (2006).
    [CrossRef]
  16. T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun. 283(18), 3434–3436 (2010).
    [CrossRef]
  17. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
    [CrossRef]
  18. H. P. Yu, B. Y. Tang, J. H. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13(18), 7243–7249 (2005).
    [CrossRef] [PubMed]
  19. Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric field dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
    [CrossRef]
  20. H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett. 94(9), 093306 (2009).
    [CrossRef]
  21. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
    [CrossRef]
  22. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
    [CrossRef] [PubMed]
  23. B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
    [CrossRef]
  24. Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
    [CrossRef] [PubMed]
  25. B. W. Liu, Z. G. Zheng, X. C. Chen, and D. Shen, “Low-voltage-modulated laser based on dye-doped polymer stabilized cholesteric liquid crystal,” Opt. Mater. Express 3(4), 519–526 (2013).
    [CrossRef]
  26. J. Schmidtke, G. Junnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
    [CrossRef]
  27. C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
    [CrossRef]
  28. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “The switching properties of chiral nematic liquid crystals using electrically commanded surfaces,” Soft Matter 5(2), 354–362 (2009).
    [CrossRef]
  29. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499(1-2), 322–328 (2006).
    [CrossRef]
  30. M. Kawachi and O. Kogure, “Hysteresis behavior of texture in field-induced nematic-cholesteric relaxation,” Jpn. J. Appl. Phys. 16(9), 1673–1678 (1977).
    [CrossRef]
  31. F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24(5), 209–212 (1970).
    [CrossRef]
  32. W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
    [CrossRef]
  33. W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
    [CrossRef]
  34. T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
    [CrossRef]
  35. R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
    [CrossRef]
  36. R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
    [CrossRef]
  37. A. Bobrovsky and V. Shibaev, “Novel type of combined photopatternable and electro-switchable polymer-stabilized cholesteric materials,” J. Mater. Chem. 19(3), 366–372 (2008).
    [CrossRef]
  38. J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
    [CrossRef]
  39. M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
    [CrossRef] [PubMed]
  40. K. G. Kang, L. C. Chien, and S. Sprunt, “Polymer-stabilized cholesteric liquid crystal microgratings: a comparison of polymer network formation and electro-optic properties for mesogenic and non-mesogenic monomers,” Liq. Cryst. 29(1), 9–18 (2002).
    [CrossRef]
  41. M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
    [CrossRef]
  42. S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
    [CrossRef]
  43. T. Scharf, Polarized Light in Liquid Crystals and Polymers (John Wiley, 2007).
  44. X. Yi, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photon. Technol. Lett. 24(17), 1509–1512 (2012).
    [CrossRef]

2013 (3)

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
[CrossRef]

B. W. Liu, Z. G. Zheng, X. C. Chen, and D. Shen, “Low-voltage-modulated laser based on dye-doped polymer stabilized cholesteric liquid crystal,” Opt. Mater. Express 3(4), 519–526 (2013).
[CrossRef]

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[CrossRef]

2012 (3)

X. Yi, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photon. Technol. Lett. 24(17), 1509–1512 (2012).
[CrossRef]

J. Schmidtke, G. Junnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[CrossRef]

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72(1-2), 227–232 (2012).
[CrossRef]

2011 (1)

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

2010 (7)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[CrossRef] [PubMed]

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with In-Plane Helix Alignment,” Jpn. J. Appl. Phys. 3, 102702 (2010).

H. Shirvani-Mahdavi, E. Mohajerani, and S. T. Wu, “Circularly polarized high-efficiency cholesteric liquid crystal lasers with a tunable nematic phase retarder,” Opt. Express 18(5), 5021–5027 (2010).
[CrossRef] [PubMed]

S. Furumi and N. Tamaoki, “Glass-Forming Cholesteric Liquid Crystal Oligomers for New Tunable Solid-State Laser,” Adv. Mater. 22(8), 886–891 (2010).
[CrossRef] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun. 283(18), 3434–3436 (2010).
[CrossRef]

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric field dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[CrossRef]

2009 (4)

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett. 94(9), 093306 (2009).
[CrossRef]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[CrossRef]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “The switching properties of chiral nematic liquid crystals using electrically commanded surfaces,” Soft Matter 5(2), 354–362 (2009).
[CrossRef]

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[CrossRef]

2008 (3)

A. Bobrovsky and V. Shibaev, “Novel type of combined photopatternable and electro-switchable polymer-stabilized cholesteric materials,” J. Mater. Chem. 19(3), 366–372 (2008).
[CrossRef]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

V. A. Belyakov, “Low threshold DFB lasing at the edge and defect modes in chiral liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 279–308 (2008).
[CrossRef]

2007 (2)

J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
[CrossRef]

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[CrossRef]

2006 (6)

T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[CrossRef]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499(1-2), 322–328 (2006).
[CrossRef]

A. D. Ford, S. M. Morris, and H. J. Coles, “Phototonics and lasing in liquid crystals,” Mater. Today 9(7-8), 36–42 (2006).
[CrossRef]

Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
[CrossRef] [PubMed]

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[CrossRef]

G. S. Chilaya, “Light-controlled change in the helical pitch and broadband tunable cholesteric liquid-crystal lasers,” Crystallogr. Rep. 51(S1), S108–S118 (2006).
[CrossRef]

2005 (1)

2004 (2)

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[CrossRef] [PubMed]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[CrossRef]

2003 (1)

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl.Phys. Part 2 Lett 42(Part 2, No. 12B), L1523–L1525 (2003).
[CrossRef]

2002 (1)

K. G. Kang, L. C. Chien, and S. Sprunt, “Polymer-stabilized cholesteric liquid crystal microgratings: a comparison of polymer network formation and electro-optic properties for mesogenic and non-mesogenic monomers,” Liq. Cryst. 29(1), 9–18 (2002).
[CrossRef]

2001 (1)

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

1999 (1)

R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
[CrossRef]

1998 (1)

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[CrossRef]

1994 (1)

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[CrossRef]

1977 (1)

M. Kawachi and O. Kogure, “Hysteresis behavior of texture in field-induced nematic-cholesteric relaxation,” Jpn. J. Appl. Phys. 16(9), 1673–1678 (1977).
[CrossRef]

1971 (1)

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[CrossRef]

1970 (2)

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[CrossRef]

F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24(5), 209–212 (1970).
[CrossRef]

Bailey, C.

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun. 283(18), 3434–3436 (2010).
[CrossRef]

Bailey, C. A.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

Barberi, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[CrossRef]

Bartolino, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[CrossRef]

Beeckman, J.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
[CrossRef]

X. Yi, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photon. Technol. Lett. 24(17), 1509–1512 (2012).
[CrossRef]

Belyakov, V. A.

V. A. Belyakov, “Low threshold DFB lasing at the edge and defect modes in chiral liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 279–308 (2008).
[CrossRef]

Bobrovsky, A.

A. Bobrovsky and V. Shibaev, “Novel type of combined photopatternable and electro-switchable polymer-stabilized cholesteric materials,” J. Mater. Chem. 19(3), 366–372 (2008).
[CrossRef]

Bricker, R. L.

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun. 283(18), 3434–3436 (2010).
[CrossRef]

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

Bunning, T. J.

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[CrossRef]

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun. 283(18), 3434–3436 (2010).
[CrossRef]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[CrossRef]

Chen, C. H.

T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[CrossRef]

Chen, C. W.

T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[CrossRef]

Chen, J.

J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
[CrossRef]

Chen, X. C.

Chen, Y. J.

T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[CrossRef]

Chien, L. C.

K. G. Kang, L. C. Chien, and S. Sprunt, “Polymer-stabilized cholesteric liquid crystal microgratings: a comparison of polymer network formation and electro-optic properties for mesogenic and non-mesogenic monomers,” Liq. Cryst. 29(1), 9–18 (2002).
[CrossRef]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[CrossRef]

Chien, L.-C.

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[CrossRef]

Chilaya, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[CrossRef]

Chilaya, G. S.

G. S. Chilaya, “Light-controlled change in the helical pitch and broadband tunable cholesteric liquid-crystal lasers,” Crystallogr. Rep. 51(S1), S108–S118 (2006).
[CrossRef]

Cho, G. S.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[CrossRef]

Choi, E. H.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[CrossRef]

Choi, S. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[CrossRef] [PubMed]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[CrossRef]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “The switching properties of chiral nematic liquid crystals using electrically commanded surfaces,” Soft Matter 5(2), 354–362 (2009).
[CrossRef]

Cipparrone, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[CrossRef]

Coles, H. J.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[CrossRef] [PubMed]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[CrossRef]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “The switching properties of chiral nematic liquid crystals using electrically commanded surfaces,” Soft Matter 5(2), 354–362 (2009).
[CrossRef]

J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
[CrossRef]

A. D. Ford, S. M. Morris, and H. J. Coles, “Phototonics and lasing in liquid crystals,” Mater. Today 9(7-8), 36–42 (2006).
[CrossRef]

De Visschere, P.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
[CrossRef]

Dessaud, N.

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[CrossRef] [PubMed]

Doane, J. W.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[CrossRef]

Doyle, C.

Duning, M. M.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

Durstock, M. F.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

Finkelmann, H.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Ford, A. D.

A. D. Ford, S. M. Morris, and H. J. Coles, “Phototonics and lasing in liquid crystals,” Mater. Today 9(7-8), 36–42 (2006).
[CrossRef]

Fuh, A. Y. G.

T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[CrossRef]

Fujii, A.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric field dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[CrossRef]

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with In-Plane Helix Alignment,” Jpn. J. Appl. Phys. 3, 102702 (2010).

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett. 94(9), 093306 (2009).
[CrossRef]

Funamoto, K.

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl.Phys. Part 2 Lett 42(Part 2, No. 12B), L1523–L1525 (2003).
[CrossRef]

Furumi, S.

S. Furumi and N. Tamaoki, “Glass-Forming Cholesteric Liquid Crystal Oligomers for New Tunable Solid-State Laser,” Adv. Mater. 22(8), 886–891 (2010).
[CrossRef] [PubMed]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499(1-2), 322–328 (2006).
[CrossRef]

Green, L.

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun. 283(18), 3434–3436 (2010).
[CrossRef]

Hatae, Y.

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[CrossRef]

Helfrich, W.

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[CrossRef]

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[CrossRef]

Hikmet, R. A. M.

R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
[CrossRef]

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[CrossRef]

Huang, Y. H.

Huck, W. T. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[CrossRef] [PubMed]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[CrossRef]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “The switching properties of chiral nematic liquid crystals using electrically commanded surfaces,” Soft Matter 5(2), 354–362 (2009).
[CrossRef]

Inoue, K.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with In-Plane Helix Alignment,” Jpn. J. Appl. Phys. 3, 102702 (2010).

Inoue, Y.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with In-Plane Helix Alignment,” Jpn. J. Appl. Phys. 3, 102702 (2010).

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric field dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[CrossRef]

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett. 94(9), 093306 (2009).
[CrossRef]

Isomura, T.

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett. 94(9), 093306 (2009).
[CrossRef]

Jang, W.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[CrossRef]

Jau, H. C.

T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[CrossRef]

Junnemann, G.

J. Schmidtke, G. Junnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[CrossRef]

Kado, S.

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72(1-2), 227–232 (2012).
[CrossRef]

Kahn, F. J.

F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24(5), 209–212 (1970).
[CrossRef]

Kang, K. G.

K. G. Kang, L. C. Chien, and S. Sprunt, “Polymer-stabilized cholesteric liquid crystal microgratings: a comparison of polymer network formation and electro-optic properties for mesogenic and non-mesogenic monomers,” Liq. Cryst. 29(1), 9–18 (2002).
[CrossRef]

Kawachi, M.

M. Kawachi and O. Kogure, “Hysteresis behavior of texture in field-induced nematic-cholesteric relaxation,” Jpn. J. Appl. Phys. 16(9), 1673–1678 (1977).
[CrossRef]

Kemperman, H.

R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
[CrossRef]

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[CrossRef]

Keuker-Baumann, S.

J. Schmidtke, G. Junnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[CrossRef]

Kim, M.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[CrossRef]

Kim, S. T.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Kim, S. W.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[CrossRef]

Kim, Y.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[CrossRef]

Kimura, K.

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72(1-2), 227–232 (2012).
[CrossRef]

Kitzerow, H. S.

J. Schmidtke, G. Junnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[CrossRef]

Koerner, H.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Kogure, O.

M. Kawachi and O. Kogure, “Hysteresis behavior of texture in field-induced nematic-cholesteric relaxation,” Jpn. J. Appl. Phys. 16(9), 1673–1678 (1977).
[CrossRef]

Kong, S. O.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[CrossRef]

Kubo, H.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Kurihara, S.

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[CrossRef]

Lee, K. M.

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[CrossRef]

Li, J. H.

Li, L.

Li, Q. A.

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun. 283(18), 3434–3436 (2010).
[CrossRef]

Lin, T. H.

T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[CrossRef]

Liu, B. W.

Lu, S.-Y.

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[CrossRef]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499(1-2), 322–328 (2006).
[CrossRef]

Matsuhisa, Y.

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric field dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[CrossRef]

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett. 94(9), 093306 (2009).
[CrossRef]

Mazzulla, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[CrossRef]

McConney, M. E.

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[CrossRef]

Mitov, M.

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[CrossRef] [PubMed]

Mohajerani, E.

Moritake, H.

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric field dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[CrossRef]

Moritsugu, M.

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[CrossRef]

Morris, S. M.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[CrossRef] [PubMed]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[CrossRef]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “The switching properties of chiral nematic liquid crystals using electrically commanded surfaces,” Soft Matter 5(2), 354–362 (2009).
[CrossRef]

J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
[CrossRef]

A. D. Ford, S. M. Morris, and H. J. Coles, “Phototonics and lasing in liquid crystals,” Mater. Today 9(7-8), 36–42 (2006).
[CrossRef]

Munoz, A.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Nakahara, Y.

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72(1-2), 227–232 (2012).
[CrossRef]

Natarajan, L. V.

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun. 283(18), 3434–3436 (2010).
[CrossRef]

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Neyts, K.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
[CrossRef]

X. Yi, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photon. Technol. Lett. 24(17), 1509–1512 (2012).
[CrossRef]

Nonaka, T.

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[CrossRef]

Nouvet, E.

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[CrossRef] [PubMed]

Ogata, T.

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[CrossRef]

Oriol, L.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[CrossRef]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499(1-2), 322–328 (2006).
[CrossRef]

Ozaki, M.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric field dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[CrossRef]

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with In-Plane Helix Alignment,” Jpn. J. Appl. Phys. 3, 102702 (2010).

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett. 94(9), 093306 (2009).
[CrossRef]

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl.Phys. Part 2 Lett 42(Part 2, No. 12B), L1523–L1525 (2003).
[CrossRef]

Ozaki, R.

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric field dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[CrossRef]

Palffy-Muhoray, P.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Panajotov, K.

X. Yi, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photon. Technol. Lett. 24(17), 1509–1512 (2012).
[CrossRef]

Park, B.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[CrossRef]

Penninck, L.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
[CrossRef]

Petriashvili, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[CrossRef]

Schmidtke, J.

J. Schmidtke, G. Junnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[CrossRef]

Seo, Y. H.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[CrossRef]

Shen, D.

Shibaev, V.

A. Bobrovsky and V. Shibaev, “Novel type of combined photopatternable and electro-switchable polymer-stabilized cholesteric materials,” J. Mater. Chem. 19(3), 366–372 (2008).
[CrossRef]

Shiozaki, Y.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Shirvani-Mahdavi, H.

Sprunt, S.

K. G. Kang, L. C. Chien, and S. Sprunt, “Polymer-stabilized cholesteric liquid crystal microgratings: a comparison of polymer network formation and electro-optic properties for mesogenic and non-mesogenic monomers,” Liq. Cryst. 29(1), 9–18 (2002).
[CrossRef]

Sutherland, R. L.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Taheri, B.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Takeshima, Y.

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72(1-2), 227–232 (2012).
[CrossRef]

Takezoe, H.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[CrossRef]

Tamaoki, N.

S. Furumi and N. Tamaoki, “Glass-Forming Cholesteric Liquid Crystal Oligomers for New Tunable Solid-State Laser,” Adv. Mater. 22(8), 886–891 (2010).
[CrossRef] [PubMed]

Tang, B. Y.

Tondiglia, V. P.

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun. 283(18), 3434–3436 (2010).
[CrossRef]

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Vaia, R. A.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Wei, T. H.

T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[CrossRef]

West, J. L.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[CrossRef]

White, T. J.

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun. 283(18), 3434–3436 (2010).
[CrossRef]

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

Wilkinson, T. D.

J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
[CrossRef]

Woestenborghs, W.

X. Yi, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photon. Technol. Lett. 24(17), 1509–1512 (2012).
[CrossRef]

Wofford, J. M.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

Wu, S. T.

Yang, D. K.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[CrossRef]

Yi, X.

X. Yi, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photon. Technol. Lett. 24(17), 1509–1512 (2012).
[CrossRef]

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499(1-2), 322–328 (2006).
[CrossRef]

Yoshida, H.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with In-Plane Helix Alignment,” Jpn. J. Appl. Phys. 3, 102702 (2010).

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric field dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[CrossRef]

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett. 94(9), 093306 (2009).
[CrossRef]

Yoshino, K.

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl.Phys. Part 2 Lett 42(Part 2, No. 12B), L1523–L1525 (2003).
[CrossRef]

Yoshioka, T.

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[CrossRef]

Yu, H. P.

Zheng, Z. G.

Zhou, Y.

Adv. Mater. (7)

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[CrossRef]

S. Furumi and N. Tamaoki, “Glass-Forming Cholesteric Liquid Crystal Oligomers for New Tunable Solid-State Laser,” Adv. Mater. 22(8), 886–891 (2010).
[CrossRef] [PubMed]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[CrossRef]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[CrossRef] [PubMed]

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater. 21(7), 771–775 (2009).
[CrossRef]

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Adv. Opt. Mater. (1)

M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[CrossRef]

Appl. Phys. Lett. (7)

S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[CrossRef]

J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 91(12), 121118 (2007).
[CrossRef]

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett. 94(9), 093306 (2009).
[CrossRef]

J. Schmidtke, G. Junnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[CrossRef]

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[CrossRef]

T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[CrossRef]

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[CrossRef]

Crystallogr. Rep. (1)

G. S. Chilaya, “Light-controlled change in the helical pitch and broadband tunable cholesteric liquid-crystal lasers,” Crystallogr. Rep. 51(S1), S108–S118 (2006).
[CrossRef]

Eur Phys J E Soft Matter (1)

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

X. Yi, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photon. Technol. Lett. 24(17), 1509–1512 (2012).
[CrossRef]

J. Appl. Phys. (4)

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
[CrossRef]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[CrossRef]

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
[CrossRef]

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[CrossRef]

J. Chem. Phys. (1)

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[CrossRef]

J. Incl. Phenom. Macrocycl. Chem. (1)

S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem. 72(1-2), 227–232 (2012).
[CrossRef]

J. Mater. Chem. (1)

A. Bobrovsky and V. Shibaev, “Novel type of combined photopatternable and electro-switchable polymer-stabilized cholesteric materials,” J. Mater. Chem. 19(3), 366–372 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (2)

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with In-Plane Helix Alignment,” Jpn. J. Appl. Phys. 3, 102702 (2010).

M. Kawachi and O. Kogure, “Hysteresis behavior of texture in field-induced nematic-cholesteric relaxation,” Jpn. J. Appl. Phys. 16(9), 1673–1678 (1977).
[CrossRef]

Jpn. J. Appl.Phys. Part 2 Lett (1)

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl.Phys. Part 2 Lett 42(Part 2, No. 12B), L1523–L1525 (2003).
[CrossRef]

Liq. Cryst. (2)

R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
[CrossRef]

K. G. Kang, L. C. Chien, and S. Sprunt, “Polymer-stabilized cholesteric liquid crystal microgratings: a comparison of polymer network formation and electro-optic properties for mesogenic and non-mesogenic monomers,” Liq. Cryst. 29(1), 9–18 (2002).
[CrossRef]

Mater. Today (1)

A. D. Ford, S. M. Morris, and H. J. Coles, “Phototonics and lasing in liquid crystals,” Mater. Today 9(7-8), 36–42 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

V. A. Belyakov, “Low threshold DFB lasing at the edge and defect modes in chiral liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 279–308 (2008).
[CrossRef]

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric field dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[CrossRef]

Nature (1)

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[CrossRef]

Opt. Commun. (1)

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun. 283(18), 3434–3436 (2010).
[CrossRef]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24(5), 209–212 (1970).
[CrossRef]

Soft Matter (1)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “The switching properties of chiral nematic liquid crystals using electrically commanded surfaces,” Soft Matter 5(2), 354–362 (2009).
[CrossRef]

Thin Solid Films (1)

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films 499(1-2), 322–328 (2006).
[CrossRef]

Other (2)

P. G. De Gennes, The Physics of Liquid Crystals (Clarendon, 1974).

T. Scharf, Polarized Light in Liquid Crystals and Polymers (John Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmission spectra for unpolarized light, a) 40 wt%, b) 50 wt% and c) 60 wt% MDA concentration for different applied electrical fields. d) Shifting of the long band edge position of the photonic band gap as a function of the applied electric field for mixtures with 40, 50 and 60 wt% MDA concentration.

Fig. 2
Fig. 2

Transmission spectra of 4 devices with 50 wt% MDA and 4 µm thickness, for right handed circularly polarized light.

Fig. 3
Fig. 3

Simulated transmission spectra for right handed polarized light for a) cells with 4 µm thickness and 3 different values of the birefringence; b) cells with ∆n = 0.163 and different thicknesses (the dotted line is a measured transmission spectrum).

Fig. 4
Fig. 4

Transmission spectra for right handed polarized light for devices with 50 wt% MDA and 8 µm thickness, for different applied electrical fields.

Fig. 5
Fig. 5

A macroscopic photograph of a CLC orange reflector with 1 × 1 cm2 active region placed on a black sheet on which the word Mohammad is printed, a) without and b) with applied electric field.

Fig. 6
Fig. 6

Scheme of the pattern with a polymerized CLC network and dispersed nano droplets with nematic LC a) without b) with applying electric field.

Fig. 7
Fig. 7

Electrical response of the 50 wt% MDA device with 8 µm thickness for an block wave electric field with amplitude 150 V/µm and frequency 1 kHz.

Tables (1)

Tables Icon

Table 1 Stokes parameters of the transmission of linearly polarized light with a wavelength near the band center.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R= | κ | 2 sin h 2 sL s 2 cos h 2 sL+ ( Δk 2 ) 2 sin h 2 sL
κ= π( n e 2 n o 2 ) λ 2( n e 2 + n o 2 )
k= 2π λ n e 2 + n o 2 2
Δk=2k 4π p
s 2 = κ 2 ( Δk 2 ) 2
R = tan h 2 κL

Metrics