Abstract

Studying dynamic fragmentation in shock-loaded metals and evaluating the geometrical and kinematical properties of the resulting fragments are of significant importance in shock physics, material science as well as microstructural modeling. In this paper, we performed the laser-driven shock-loaded experiment on the Shenguang-Ш (SGШ) prototype laser facility, and employed X-ray micro-tomography technique to give a whole insight into the actual fragmentation process. To investigate the size distribution of the soft recovered fragments from Poly 4-methyl-1-pentene (PMP) foam sample, we further developed an automatic analysis approach based on the improved watershed segmentation. Comparison results of segmenting fragments in slices with different methods demonstrated that our proposed segmentation method can overcome the drawbacks of under-segmentation and over-segmentation, and has the best performance in both segmentation accuracy and robustness. With the proposed automatic analysis approach, other parameters such as the position distribution and penetration depth are also obtained, which are very helpful for understanding the dynamic failure mechanisms.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
    [CrossRef]
  2. M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
    [CrossRef]
  3. L. Signor, G. Roy, P. Y. Channal, P. L. Héreil, F. Buy, C. Voltz, F. Llorca, T. de Rességuier, and A. Dragon, “Debris cloud ejection from shock-loaded tin melted on release or on compression,” AIP proceedings on Shock Compression of Condensed Matter (2009).
    [CrossRef]
  4. T. de Rességuier, E. Lescoute, L. Signor, D. Loison, A. Dragon, M. Boustie, J. P. Cuq-Lelandais, and L. Berthe, “Laser shock experiments to investigate and to model various aspects of the response of metals to shock loading,” EPJ Web of Conferences 10, 00023 (2010).
    [CrossRef]
  5. S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res. 24(4), 409–422 (2004).
    [CrossRef]
  6. K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, “Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures,” Int. J. Impact Eng. 25(7), 631–639 (2001).
    [CrossRef]
  7. D. B. Holtkamp, D. A. Clark, E. N. Ferm, R. A. Gallegos, D. Hammon, W. F. Hemsing, G. E. Hogan, V. H. Holmes, N. S. P. King, R. Liljestrand, R. P. Lopez, F. E. Merrill, C. L. Morris, K. B. Morley, M. M. Murray, P. D. Pazuchanics, K. P. Prestridge, J. P. Quintana, A. Saunders, T. Schafer, M. A. Shinas, and H. L. Stacy, “A survey of high explosive-induced damage and spall in selected metals using proton radiography,” AIP proceedings on Shock Compression of Condensed Matter 706,477–482 (2004).
    [CrossRef]
  8. T. de Rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, “Experimental investigation of liquid spall in laser shock-loaded tin,” J. Appl. Phys. 101(1), 013506 (2007).
    [CrossRef]
  9. L. Signor, T. de Rességuier, A. Dragon, G. Roy, A. Fanget, and M. Faessel, “Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-load tin,” Int. J. Impact Eng. 37(8), 887–900 (2010).
    [CrossRef]
  10. L. Signor, T. de Rességuier, G. Roy, A. Dragon, and F. Liorca, “Fragment-size prediction during dynamic fragmentation of shock-melted tin: recovery experiments and modeling issues,” AIP proceedings on Shock Compression of Condensed Matter 706,593–596 (2008).
    [CrossRef]
  11. P. Soille, “Morphological image analysis: principles and applications,” 2nd Ed, Springer-Verlag, Berlin Heidelberg, Charper 6, 183–216 (2002).
  12. L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991).
    [CrossRef]
  13. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
    [CrossRef]
  14. D. Nam, J. Mantel, D. Bull, P. Verkade, and A. Achim, “Segmentation and analysis insulin granule membranes in beta islet cell electron micrographs,” 20th European Signal Processing conference, 2228–2232 (2012).
  15. D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004).
    [CrossRef] [PubMed]
  16. S. Kumar, S. H. Ong, S. Ranganath, and F. T. Chew, “Invariant texture classification for biomedical cell specimens via non-linear polar map filtering,” Comput. Vis. Image Underst. 114(1), 44–53 (2010).
    [CrossRef]
  17. J. M. Gauch, “Image segmentation and analysis via multiscale gradient watershed hierarchies,” IEEE Trans. Image Process. 8(1), 69–79 (1999).
    [CrossRef] [PubMed]
  18. L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation using the Mumford and Shah model,” Int. J. Comput. Vis. 50(3), 271–293 (2002).
    [CrossRef]
  19. M. Sezgin, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging 13(1), 146–165 (2004).
    [CrossRef]
  20. J. T. Xin, W. H. He, J. L. Shao, J. Li, P. Wang, and Y. Q. Gu, “Experimental investigation of fragments recovered from laser shock-loaded tin,” J. Phys. D. (Accepted).

2010

L. Signor, T. de Rességuier, A. Dragon, G. Roy, A. Fanget, and M. Faessel, “Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-load tin,” Int. J. Impact Eng. 37(8), 887–900 (2010).
[CrossRef]

S. Kumar, S. H. Ong, S. Ranganath, and F. T. Chew, “Invariant texture classification for biomedical cell specimens via non-linear polar map filtering,” Comput. Vis. Image Underst. 114(1), 44–53 (2010).
[CrossRef]

2009

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

2007

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

T. de Rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, “Experimental investigation of liquid spall in laser shock-loaded tin,” J. Appl. Phys. 101(1), 013506 (2007).
[CrossRef]

2004

D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004).
[CrossRef] [PubMed]

S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res. 24(4), 409–422 (2004).
[CrossRef]

M. Sezgin, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging 13(1), 146–165 (2004).
[CrossRef]

2002

L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation using the Mumford and Shah model,” Int. J. Comput. Vis. 50(3), 271–293 (2002).
[CrossRef]

2001

K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, “Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures,” Int. J. Impact Eng. 25(7), 631–639 (2001).
[CrossRef]

1999

J. M. Gauch, “Image segmentation and analysis via multiscale gradient watershed hierarchies,” IEEE Trans. Image Process. 8(1), 69–79 (1999).
[CrossRef] [PubMed]

1991

L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991).
[CrossRef]

1979

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
[CrossRef]

Achim, A.

D. Nam, J. Mantel, D. Bull, P. Verkade, and A. Achim, “Segmentation and analysis insulin granule membranes in beta islet cell electron micrographs,” 20th European Signal Processing conference, 2228–2232 (2012).

Asimow, P. D.

S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res. 24(4), 409–422 (2004).
[CrossRef]

Baumung, K.

K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, “Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures,” Int. J. Impact Eng. 25(7), 631–639 (2001).
[CrossRef]

Bazarov, Y. B.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Bluhm, H.

K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, “Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures,” Int. J. Impact Eng. 25(7), 631–639 (2001).
[CrossRef]

Boustie, M.

T. de Rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, “Experimental investigation of liquid spall in laser shock-loaded tin,” J. Appl. Phys. 101(1), 013506 (2007).
[CrossRef]

Bull, D.

D. Nam, J. Mantel, D. Bull, P. Verkade, and A. Achim, “Segmentation and analysis insulin granule membranes in beta islet cell electron micrographs,” 20th European Signal Processing conference, 2228–2232 (2012).

Burtsev, V. V.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Buttler, W. T.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Chan, T. F.

L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation using the Mumford and Shah model,” Int. J. Comput. Vis. 50(3), 271–293 (2002).
[CrossRef]

Chew, F. T.

S. Kumar, S. H. Ong, S. Ranganath, and F. T. Chew, “Invariant texture classification for biomedical cell specimens via non-linear polar map filtering,” Comput. Vis. Image Underst. 114(1), 44–53 (2010).
[CrossRef]

de Rességuier, T.

L. Signor, T. de Rességuier, A. Dragon, G. Roy, A. Fanget, and M. Faessel, “Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-load tin,” Int. J. Impact Eng. 37(8), 887–900 (2010).
[CrossRef]

T. de Rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, “Experimental investigation of liquid spall in laser shock-loaded tin,” J. Appl. Phys. 101(1), 013506 (2007).
[CrossRef]

Dragon, A.

L. Signor, T. de Rességuier, A. Dragon, G. Roy, A. Fanget, and M. Faessel, “Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-load tin,” Int. J. Impact Eng. 37(8), 887–900 (2010).
[CrossRef]

T. de Rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, “Experimental investigation of liquid spall in laser shock-loaded tin,” J. Appl. Phys. 101(1), 013506 (2007).
[CrossRef]

Erunov, S. V.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Faessel, M.

L. Signor, T. de Rességuier, A. Dragon, G. Roy, A. Fanget, and M. Faessel, “Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-load tin,” Int. J. Impact Eng. 37(8), 887–900 (2010).
[CrossRef]

Fanget, A.

L. Signor, T. de Rességuier, A. Dragon, G. Roy, A. Fanget, and M. Faessel, “Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-load tin,” Int. J. Impact Eng. 37(8), 887–900 (2010).
[CrossRef]

Fowlkes, C. C.

D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004).
[CrossRef] [PubMed]

Gauch, J. M.

J. M. Gauch, “Image segmentation and analysis via multiscale gradient watershed hierarchies,” IEEE Trans. Image Process. 8(1), 69–79 (1999).
[CrossRef] [PubMed]

Glushikhin, V. V.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Grover, M.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Gu, Y. Q.

J. T. Xin, W. H. He, J. L. Shao, J. Li, P. Wang, and Y. Q. Gu, “Experimental investigation of fragments recovered from laser shock-loaded tin,” J. Phys. D. (Accepted).

Hammerberg, J. E.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Hauer, A. A.

S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res. 24(4), 409–422 (2004).
[CrossRef]

He, W. H.

J. T. Xin, W. H. He, J. L. Shao, J. Li, P. Wang, and Y. Q. Gu, “Experimental investigation of fragments recovered from laser shock-loaded tin,” J. Phys. D. (Accepted).

Hixson, R. S.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Iverson, A. J.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Johnson, R. P.

S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res. 24(4), 409–422 (2004).
[CrossRef]

Kalashnik, I. A.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Kanel, G. I.

K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, “Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures,” Int. J. Impact Eng. 25(7), 631–639 (2001).
[CrossRef]

Kulakov, E. V.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Kumar, S.

S. Kumar, S. H. Ong, S. Ranganath, and F. T. Chew, “Invariant texture classification for biomedical cell specimens via non-linear polar map filtering,” Comput. Vis. Image Underst. 114(1), 44–53 (2010).
[CrossRef]

Kyrala, G. A.

S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res. 24(4), 409–422 (2004).
[CrossRef]

Li, J.

J. T. Xin, W. H. He, J. L. Shao, J. Li, P. Wang, and Y. Q. Gu, “Experimental investigation of fragments recovered from laser shock-loaded tin,” J. Phys. D. (Accepted).

Llorca, F.

T. de Rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, “Experimental investigation of liquid spall in laser shock-loaded tin,” J. Appl. Phys. 101(1), 013506 (2007).
[CrossRef]

Lobastov, S. A.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Luo, S. N.

S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res. 24(4), 409–422 (2004).
[CrossRef]

Macrum, G. S.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Malik, J.

D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004).
[CrossRef] [PubMed]

Mantel, J.

D. Nam, J. Mantel, D. Bull, P. Verkade, and A. Achim, “Segmentation and analysis insulin granule membranes in beta islet cell electron micrographs,” 20th European Signal Processing conference, 2228–2232 (2012).

Martin, D. R.

D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004).
[CrossRef] [PubMed]

Mikhailov, A. L.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Morley, K. B.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Müller, G.

K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, “Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures,” Int. J. Impact Eng. 25(7), 631–639 (2001).
[CrossRef]

Nam, D.

D. Nam, J. Mantel, D. Bull, P. Verkade, and A. Achim, “Segmentation and analysis insulin granule membranes in beta islet cell electron micrographs,” 20th European Signal Processing conference, 2228–2232 (2012).

Obst, A. W.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Ogorodnikov, V. A.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Olson, R. T.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Ong, S. H.

S. Kumar, S. H. Ong, S. Ranganath, and F. T. Chew, “Invariant texture classification for biomedical cell specimens via non-linear polar map filtering,” Comput. Vis. Image Underst. 114(1), 44–53 (2010).
[CrossRef]

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
[CrossRef]

Paisley, D. L.

S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res. 24(4), 409–422 (2004).
[CrossRef]

Payton, J. R.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Ranganath, S.

S. Kumar, S. H. Ong, S. Ranganath, and F. T. Chew, “Invariant texture classification for biomedical cell specimens via non-linear polar map filtering,” Comput. Vis. Image Underst. 114(1), 44–53 (2010).
[CrossRef]

Razorenov, S. V.

K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, “Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures,” Int. J. Impact Eng. 25(7), 631–639 (2001).
[CrossRef]

Rigg, P. A.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Romanov, A. V.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Routley, N.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Roy, G.

L. Signor, T. de Rességuier, A. Dragon, G. Roy, A. Fanget, and M. Faessel, “Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-load tin,” Int. J. Impact Eng. 37(8), 887–900 (2010).
[CrossRef]

T. de Rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, “Experimental investigation of liquid spall in laser shock-loaded tin,” J. Appl. Phys. 101(1), 013506 (2007).
[CrossRef]

Rudnev, A. V.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Sezgin, M.

M. Sezgin, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging 13(1), 146–165 (2004).
[CrossRef]

Shao, J. L.

J. T. Xin, W. H. He, J. L. Shao, J. Li, P. Wang, and Y. Q. Gu, “Experimental investigation of fragments recovered from laser shock-loaded tin,” J. Phys. D. (Accepted).

Signor, L.

L. Signor, T. de Rességuier, A. Dragon, G. Roy, A. Fanget, and M. Faessel, “Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-load tin,” Int. J. Impact Eng. 37(8), 887–900 (2010).
[CrossRef]

T. de Rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, “Experimental investigation of liquid spall in laser shock-loaded tin,” J. Appl. Phys. 101(1), 013506 (2007).
[CrossRef]

Singer, J.

K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, “Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures,” Int. J. Impact Eng. 25(7), 631–639 (2001).
[CrossRef]

Soille, P.

L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991).
[CrossRef]

Stevens, G. D.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Swift, D. C.

S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res. 24(4), 409–422 (2004).
[CrossRef]

Tierney, T. E.

S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res. 24(4), 409–422 (2004).
[CrossRef]

Tkachenko, B. I.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Tschauner, O.

S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res. 24(4), 409–422 (2004).
[CrossRef]

Tsyganov, V. A.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Turley, W. D.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Utkin, A. V.

K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, “Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures,” Int. J. Impact Eng. 25(7), 631–639 (2001).
[CrossRef]

Veeser, L.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Verkade, P.

D. Nam, J. Mantel, D. Bull, P. Verkade, and A. Achim, “Segmentation and analysis insulin granule membranes in beta islet cell electron micrographs,” 20th European Signal Processing conference, 2228–2232 (2012).

Vese, L. A.

L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation using the Mumford and Shah model,” Int. J. Comput. Vis. 50(3), 271–293 (2002).
[CrossRef]

Vincent, L.

L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991).
[CrossRef]

Wang, P.

J. T. Xin, W. H. He, J. L. Shao, J. Li, P. Wang, and Y. Q. Gu, “Experimental investigation of fragments recovered from laser shock-loaded tin,” J. Phys. D. (Accepted).

Xin, J. T.

J. T. Xin, W. H. He, J. L. Shao, J. Li, P. Wang, and Y. Q. Gu, “Experimental investigation of fragments recovered from laser shock-loaded tin,” J. Phys. D. (Accepted).

Zellner, M. B.

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

Comput. Vis. Image Underst.

S. Kumar, S. H. Ong, S. Ranganath, and F. T. Chew, “Invariant texture classification for biomedical cell specimens via non-linear polar map filtering,” Comput. Vis. Image Underst. 114(1), 44–53 (2010).
[CrossRef]

High Press. Res.

S. N. Luo, D. C. Swift, T. E. Tierney, D. L. Paisley, G. A. Kyrala, R. P. Johnson, A. A. Hauer, O. Tschauner, and P. D. Asimow, “Laser-induced shock waves in condensed matter: some techniques and applications,” High Press. Res. 24(4), 409–422 (2004).
[CrossRef]

IEEE Trans. Image Process.

J. M. Gauch, “Image segmentation and analysis via multiscale gradient watershed hierarchies,” IEEE Trans. Image Process. 8(1), 69–79 (1999).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell.

L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991).
[CrossRef]

D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004).
[CrossRef] [PubMed]

IEEE Trans. Syst. Man Cybern.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
[CrossRef]

Int. J. Comput. Vis.

L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation using the Mumford and Shah model,” Int. J. Comput. Vis. 50(3), 271–293 (2002).
[CrossRef]

Int. J. Impact Eng.

K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, “Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures,” Int. J. Impact Eng. 25(7), 631–639 (2001).
[CrossRef]

L. Signor, T. de Rességuier, A. Dragon, G. Roy, A. Fanget, and M. Faessel, “Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-load tin,” Int. J. Impact Eng. 37(8), 887–900 (2010).
[CrossRef]

J. Appl. Phys.

T. de Rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, “Experimental investigation of liquid spall in laser shock-loaded tin,” J. Appl. Phys. 101(1), 013506 (2007).
[CrossRef]

M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, “Effect of shock-breakout pressure on ejection of micron-scale material from shocked tin surface,” J. Appl. Phys. 102(1), 013522 (2007).
[CrossRef]

J. Electron. Imaging

M. Sezgin, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging 13(1), 146–165 (2004).
[CrossRef]

J. Exp. Theor. Phys.

V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).
[CrossRef]

Other

L. Signor, T. de Rességuier, G. Roy, A. Dragon, and F. Liorca, “Fragment-size prediction during dynamic fragmentation of shock-melted tin: recovery experiments and modeling issues,” AIP proceedings on Shock Compression of Condensed Matter 706,593–596 (2008).
[CrossRef]

P. Soille, “Morphological image analysis: principles and applications,” 2nd Ed, Springer-Verlag, Berlin Heidelberg, Charper 6, 183–216 (2002).

L. Signor, G. Roy, P. Y. Channal, P. L. Héreil, F. Buy, C. Voltz, F. Llorca, T. de Rességuier, and A. Dragon, “Debris cloud ejection from shock-loaded tin melted on release or on compression,” AIP proceedings on Shock Compression of Condensed Matter (2009).
[CrossRef]

T. de Rességuier, E. Lescoute, L. Signor, D. Loison, A. Dragon, M. Boustie, J. P. Cuq-Lelandais, and L. Berthe, “Laser shock experiments to investigate and to model various aspects of the response of metals to shock loading,” EPJ Web of Conferences 10, 00023 (2010).
[CrossRef]

D. B. Holtkamp, D. A. Clark, E. N. Ferm, R. A. Gallegos, D. Hammon, W. F. Hemsing, G. E. Hogan, V. H. Holmes, N. S. P. King, R. Liljestrand, R. P. Lopez, F. E. Merrill, C. L. Morris, K. B. Morley, M. M. Murray, P. D. Pazuchanics, K. P. Prestridge, J. P. Quintana, A. Saunders, T. Schafer, M. A. Shinas, and H. L. Stacy, “A survey of high explosive-induced damage and spall in selected metals using proton radiography,” AIP proceedings on Shock Compression of Condensed Matter 706,477–482 (2004).
[CrossRef]

J. T. Xin, W. H. He, J. L. Shao, J. Li, P. Wang, and Y. Q. Gu, “Experimental investigation of fragments recovered from laser shock-loaded tin,” J. Phys. D. (Accepted).

D. Nam, J. Mantel, D. Bull, P. Verkade, and A. Achim, “Segmentation and analysis insulin granule membranes in beta islet cell electron micrographs,” 20th European Signal Processing conference, 2228–2232 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. (b) The soft recovery device PMP foam. (c) Intensity distribution of the irradiated spot.

Fig. 2
Fig. 2

(a) 3D reconstruction of tin fragments detected within the PMP foam sample. (b) Three of the reconstructed slices at different penetration depths of 0.11mm(sliceA-A), 2.37mm (slice B-B) and 3.93mm(C-C).

Fig. 3
Fig. 3

Illustration of our interpretation of the experiment.

Fig. 4
Fig. 4

Illustration of the main steps of detecting fragments. (a) Source slice. (b) Result of extend minimum transform. (c) Result of watershed transform. (d) Result of adaptive region threshold segmentation.

Fig. 5
Fig. 5

Comparison results of segmenting fragments with different methods. (a) Gradient Watersheds. (b) Level-Set. (c) Our proposed method.

Fig. 6
Fig. 6

Comparison results of segmenting spall with different methods. (a) Gradient Watersheds. (b) Level-Set. (c) Our proposed method.

Fig. 7
Fig. 7

(a) Position distribution of fragments in function of their penetration depth and radial position. (b) Volume distribution of fragments in function of their volumes and the corresponding number.

Tables (1)

Tables Icon

Table 1 Evaluation Results of Segmenting Particles and Spalls According to the MHD Criteria

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

HMIN h (g)= R g δ (g+h)
RMI N h [g]={ pM,g(p)=h p δ ( 1 ) (M)\M,g(p)>h
g E =RMIN[HMI N h (g)]
{ T i * = argmax k { σ i 2 ( k ) } σ i 2 ( k )= ω 0i ( μ 0i μ i ) 2 + ω 1i ( μ 1i μ i ) 2

Metrics