Abstract

We evaluated the optimal detection angle for maximizing the signal to noise ratio (SNR) in sub-diffraction resolution photothermal microscopy. The angular dependent photothermal signal was calculated based on scattering theory using the temporally modulated Yukawa potential, and its detection angle and modulation frequency dependencies were analyzed. We verified the theoretical findings by imaging gold nanoparticles using laser diode based photothermal microscopy with balanced detection scheme. High-sensitivity (SNR ~40) photothermal biological imaging of a mouse brain was also demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
    [CrossRef] [PubMed]
  2. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
    [CrossRef] [PubMed]
  3. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
    [CrossRef] [PubMed]
  4. C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
    [PubMed]
  5. V. Octeau, L. Cognet, L. Duchesne, D. Lasne, N. Schaeffer, D. G. Fernig, and B. Lounis, “Photothermal absorption correlation spectroscopy,” ACS Nano 3(2), 345–350 (2009).
    [CrossRef] [PubMed]
  6. P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113(27), 11451–11457 (2009).
    [CrossRef]
  7. R. Radünz, D. Rings, K. Kroy, and F. Cichos, “Hot brownian particles and photothermal correlation spectroscopy,” J. Phys. Chem. A 113(9), 1674–1677 (2009).
    [CrossRef] [PubMed]
  8. C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
    [CrossRef] [PubMed]
  9. S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
    [CrossRef]
  10. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
    [CrossRef] [PubMed]
  11. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
    [CrossRef] [PubMed]
  12. P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
    [CrossRef] [PubMed]
  13. L. Wei and W. Min, “Pump-probe optical microscopy for imaging nonfluorescent chromophores,” Anal. Bioanal. Chem. 403(8), 2197–2202 (2012).
    [CrossRef] [PubMed]
  14. J. Miyazaki, H. Tsurui, A. Hayashi-Takagi, H. Kasai, and T. Kobayashi, “Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes,” Opt. Express 22(8), 9024–9032 (2014).
    [CrossRef] [PubMed]
  15. W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
    [CrossRef]
  16. A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
    [CrossRef]
  17. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
    [CrossRef]
  18. M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
    [CrossRef] [PubMed]
  19. M. Selmke, M. Braun, and F. Cichos, “Gaussian beam photothermal single particle microscopy,” J. Opt. Soc. Am. A 29(10), 2237–2241 (2012).
    [CrossRef] [PubMed]
  20. M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012).
    [CrossRef] [PubMed]
  21. M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110(10), 103901 (2013).
    [CrossRef] [PubMed]
  22. M. Selmke and F. Cichos, “Photonic Rutherford scattering: A classical and quantum mechanical analogy in ray and wave optics,” Am. J. Phys. 81(6), 405 (2013).
    [CrossRef]
  23. H. Yukawa, “On the interaction of elementary particles. I,” Proc. Phys.-Math. Soc. Jpn. 17, 48–57 (1935).
  24. K. Gottfried and T.-M. Yan, Quantum Mechanics: Fundamentals, Second Edition (Springer, 2003).
  25. J. Miyazaki, K. Kawasumi, and T. Kobayashi, “Resolution improvement in laser diodes-based pump-probe microscopy with an annular pupil filter,” Opt. Lett. 39(14), 4219–4222 (2014).
    [CrossRef]
  26. K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(9A), 5316–5322 (2000).
    [CrossRef]

2014 (3)

2013 (3)

M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110(10), 103901 (2013).
[CrossRef] [PubMed]

M. Selmke and F. Cichos, “Photonic Rutherford scattering: A classical and quantum mechanical analogy in ray and wave optics,” Am. J. Phys. 81(6), 405 (2013).
[CrossRef]

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

2012 (6)

W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
[CrossRef]

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[CrossRef]

L. Wei and W. Min, “Pump-probe optical microscopy for imaging nonfluorescent chromophores,” Anal. Bioanal. Chem. 403(8), 2197–2202 (2012).
[CrossRef] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
[CrossRef] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Gaussian beam photothermal single particle microscopy,” J. Opt. Soc. Am. A 29(10), 2237–2241 (2012).
[CrossRef] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012).
[CrossRef] [PubMed]

2011 (1)

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[CrossRef] [PubMed]

2010 (2)

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[CrossRef]

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
[CrossRef] [PubMed]

2009 (3)

V. Octeau, L. Cognet, L. Duchesne, D. Lasne, N. Schaeffer, D. G. Fernig, and B. Lounis, “Photothermal absorption correlation spectroscopy,” ACS Nano 3(2), 345–350 (2009).
[CrossRef] [PubMed]

P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113(27), 11451–11457 (2009).
[CrossRef]

R. Radünz, D. Rings, K. Kroy, and F. Cichos, “Hot brownian particles and photothermal correlation spectroscopy,” J. Phys. Chem. A 113(9), 1674–1677 (2009).
[CrossRef] [PubMed]

2006 (2)

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

2004 (1)

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[CrossRef] [PubMed]

2003 (1)

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

2002 (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

2000 (1)

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(9A), 5316–5322 (2000).
[CrossRef]

1935 (1)

H. Yukawa, “On the interaction of elementary particles. I,” Proc. Phys.-Math. Soc. Jpn. 17, 48–57 (1935).

Berciaud, S.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[CrossRef] [PubMed]

Blab, G. A.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[CrossRef] [PubMed]

Boyer, D.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Braun, M.

Carney, R. P.

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[CrossRef] [PubMed]

Chang, W.-S.

W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
[CrossRef]

Chong, S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[CrossRef]

Choquet, D.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

Cichos, F.

M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110(10), 103901 (2013).
[CrossRef] [PubMed]

M. Selmke and F. Cichos, “Photonic Rutherford scattering: A classical and quantum mechanical analogy in ray and wave optics,” Am. J. Phys. 81(6), 405 (2013).
[CrossRef]

M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012).
[CrossRef] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Gaussian beam photothermal single particle microscopy,” J. Opt. Soc. Am. A 29(10), 2237–2241 (2012).
[CrossRef] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
[CrossRef] [PubMed]

R. Radünz, D. Rings, K. Kroy, and F. Cichos, “Hot brownian particles and photothermal correlation spectroscopy,” J. Phys. Chem. A 113(9), 1674–1677 (2009).
[CrossRef] [PubMed]

Cognet, L.

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[CrossRef] [PubMed]

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[CrossRef]

V. Octeau, L. Cognet, L. Duchesne, D. Lasne, N. Schaeffer, D. G. Fernig, and B. Lounis, “Photothermal absorption correlation spectroscopy,” ACS Nano 3(2), 345–350 (2009).
[CrossRef] [PubMed]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

Duchesne, L.

V. Octeau, L. Cognet, L. Duchesne, D. Lasne, N. Schaeffer, D. G. Fernig, and B. Lounis, “Photothermal absorption correlation spectroscopy,” ACS Nano 3(2), 345–350 (2009).
[CrossRef] [PubMed]

Fernig, D. G.

V. Octeau, L. Cognet, L. Duchesne, D. Lasne, N. Schaeffer, D. G. Fernig, and B. Lounis, “Photothermal absorption correlation spectroscopy,” ACS Nano 3(2), 345–350 (2009).
[CrossRef] [PubMed]

Gaiduk, A.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
[CrossRef] [PubMed]

P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113(27), 11451–11457 (2009).
[CrossRef]

Gautier, J.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Gautreau, A.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Giannone, G.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Groc, L.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Hayashi-Takagi, A.

Heine, M.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Hibara, A.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(9A), 5316–5322 (2000).
[CrossRef]

Holtom, G. R.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[CrossRef]

Jung, J. M.

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[CrossRef] [PubMed]

Kasai, H.

Kawasumi, K.

Kimura, H.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(9A), 5316–5322 (2000).
[CrossRef]

Kitamori, T.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(9A), 5316–5322 (2000).
[CrossRef]

Kobayashi, T.

Krens, S. F. G.

P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113(27), 11451–11457 (2009).
[CrossRef]

Kroy, K.

R. Radünz, D. Rings, K. Kroy, and F. Cichos, “Hot brownian particles and photothermal correlation spectroscopy,” J. Phys. Chem. A 113(9), 1674–1677 (2009).
[CrossRef] [PubMed]

Kulzer, F.

P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113(27), 11451–11457 (2009).
[CrossRef]

Lasne, D.

V. Octeau, L. Cognet, L. Duchesne, D. Lasne, N. Schaeffer, D. G. Fernig, and B. Lounis, “Photothermal absorption correlation spectroscopy,” ACS Nano 3(2), 345–350 (2009).
[CrossRef] [PubMed]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

Leduc, C.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[CrossRef] [PubMed]

Link, S.

W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
[CrossRef]

Lounis, B.

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[CrossRef] [PubMed]

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[CrossRef]

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[CrossRef] [PubMed]

V. Octeau, L. Cognet, L. Duchesne, D. Lasne, N. Schaeffer, D. G. Fernig, and B. Lounis, “Photothermal absorption correlation spectroscopy,” ACS Nano 3(2), 345–350 (2009).
[CrossRef] [PubMed]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Lu, S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[CrossRef]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Min, W.

L. Wei and W. Min, “Pump-probe optical microscopy for imaging nonfluorescent chromophores,” Anal. Bioanal. Chem. 403(8), 2197–2202 (2012).
[CrossRef] [PubMed]

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[CrossRef]

Miyazaki, J.

Octeau, V.

V. Octeau, L. Cognet, L. Duchesne, D. Lasne, N. Schaeffer, D. G. Fernig, and B. Lounis, “Photothermal absorption correlation spectroscopy,” ACS Nano 3(2), 345–350 (2009).
[CrossRef] [PubMed]

Orrit, M.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
[CrossRef] [PubMed]

P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113(27), 11451–11457 (2009).
[CrossRef]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Oudjedi, L.

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[CrossRef]

Parra-Vasquez, A. N. G.

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[CrossRef]

Paulo, P. M. R.

P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113(27), 11451–11457 (2009).
[CrossRef]

Radünz, R.

R. Radünz, D. Rings, K. Kroy, and F. Cichos, “Hot brownian particles and photothermal correlation spectroscopy,” J. Phys. Chem. A 113(9), 1674–1677 (2009).
[CrossRef] [PubMed]

Rings, D.

R. Radünz, D. Rings, K. Kroy, and F. Cichos, “Hot brownian particles and photothermal correlation spectroscopy,” J. Phys. Chem. A 113(9), 1674–1677 (2009).
[CrossRef] [PubMed]

Ruijgrok, P. V.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
[CrossRef] [PubMed]

Sawada, T.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(9A), 5316–5322 (2000).
[CrossRef]

Schaeffer, N.

V. Octeau, L. Cognet, L. Duchesne, D. Lasne, N. Schaeffer, D. G. Fernig, and B. Lounis, “Photothermal absorption correlation spectroscopy,” ACS Nano 3(2), 345–350 (2009).
[CrossRef] [PubMed]

Schmidt, T.

P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113(27), 11451–11457 (2009).
[CrossRef]

Selmke, M.

M. Selmke and F. Cichos, “Photonic Rutherford scattering: A classical and quantum mechanical analogy in ray and wave optics,” Am. J. Phys. 81(6), 405 (2013).
[CrossRef]

M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110(10), 103901 (2013).
[CrossRef] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012).
[CrossRef] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Gaussian beam photothermal single particle microscopy,” J. Opt. Soc. Am. A 29(10), 2237–2241 (2012).
[CrossRef] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
[CrossRef] [PubMed]

Si, S.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Soto-Ribeiro, M.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Spaink, H. P.

P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113(27), 11451–11457 (2009).
[CrossRef]

Stellacci, F.

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[CrossRef] [PubMed]

Tamarat, P.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Tardin, C.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

Tsurui, H.

Uchiyama, K.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(9A), 5316–5322 (2000).
[CrossRef]

Vermeulen, P.

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[CrossRef] [PubMed]

Wehrle-Haller, B.

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Wei, L.

L. Wei and W. Min, “Pump-probe optical microscopy for imaging nonfluorescent chromophores,” Anal. Bioanal. Chem. 403(8), 2197–2202 (2012).
[CrossRef] [PubMed]

Xie, X. S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[CrossRef]

Yorulmaz, M.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
[CrossRef] [PubMed]

Yukawa, H.

H. Yukawa, “On the interaction of elementary particles. I,” Proc. Phys.-Math. Soc. Jpn. 17, 48–57 (1935).

ACS Nano (3)

C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011).
[CrossRef] [PubMed]

V. Octeau, L. Cognet, L. Duchesne, D. Lasne, N. Schaeffer, D. G. Fernig, and B. Lounis, “Photothermal absorption correlation spectroscopy,” ACS Nano 3(2), 345–350 (2009).
[CrossRef] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
[CrossRef] [PubMed]

Am. J. Phys. (1)

M. Selmke and F. Cichos, “Photonic Rutherford scattering: A classical and quantum mechanical analogy in ray and wave optics,” Am. J. Phys. 81(6), 405 (2013).
[CrossRef]

Anal. Bioanal. Chem. (1)

L. Wei and W. Min, “Pump-probe optical microscopy for imaging nonfluorescent chromophores,” Anal. Bioanal. Chem. 403(8), 2197–2202 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[CrossRef]

Biophys. J. (1)

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

J. Microsc. (1)

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. A (1)

R. Radünz, D. Rings, K. Kroy, and F. Cichos, “Hot brownian particles and photothermal correlation spectroscopy,” J. Phys. Chem. A 113(9), 1674–1677 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113(27), 11451–11457 (2009).
[CrossRef]

J. Phys. Chem. Lett. (2)

W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
[CrossRef]

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(9A), 5316–5322 (2000).
[CrossRef]

Nano Lett. (1)

C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013).
[PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[CrossRef] [PubMed]

M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110(10), 103901 (2013).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

Proc. Phys.-Math. Soc. Jpn. (1)

H. Yukawa, “On the interaction of elementary particles. I,” Proc. Phys.-Math. Soc. Jpn. 17, 48–57 (1935).

Science (2)

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Other (1)

K. Gottfried and T.-M. Yan, Quantum Mechanics: Fundamentals, Second Edition (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the principle of photothermal microscopy. A plane-wave field (blue lines) or a focusing field with NAf = n0sin φ f (black curves) is incident on the sample and is deflected (scattered) due to the local refractive index change around a point heat source. Transmitted and deflected photons are collected through a condenser lens with NAc = n0sin φ c.

Fig. 2
Fig. 2

Detection angle dependence of the photothermal signal. (a) Yin and Yout as a function of numerical aperture of the condenser lens NAc. We set rc = 0.56. The vertical axis is normalized by ( σ I 0 ) / ( 8 π κ n 0 ) n / T . Their magnitude M and the phase shift Φ are shown as black and blue solid lines, respectively. (b) M as a function of NAc with various values of rc.

Fig. 3
Fig. 3

Magnitude (upper panel) and the corresponding phase shift images (lower panel) of gold nanoparticles dispersed in PVA film. The numerical aperture of the condenser lens NAc was (a) 0.3, (b) 0.42, (c) 0.54, and (d) 0.66. The image size is 19.6 x 19.6 μm with 200 x 200 pixels.

Fig. 4
Fig. 4

(a) The integrated intensity (filled black circles) and average phase shift, Φ, (open blue squares) as a function of the numerical aperture of the condenser lens (NAc). (b) Maximum intensities in the images Smax (filled black circles) and background noise levels Sb (open red triangles), and their ratios (blue stars) as a function of NAc.

Fig. 5
Fig. 5

Photothermal imaging of a slice of mouse brain labeled with weakly fluorescent quantum dots. (a) Overview image and (b)-(d) images of the same area with different values of the numerical aperture of the condenser lens NAc. The image sizes are (a) 200 x 200 μm with 500 x 500 pixels and (b)-(d), 19.6 x 19.6 μm with 200 x 200 pixels. NAc was set at (a) 0.42, (b) 0.36, (c) 0.72, and (b) 0.9, respectively. The scale bars indicate (a) 20 μm and (b) 5 μm.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

2 U(r,t)+ k 2 [n(r,t)/ n 0 ] 2 U(r,t)=0,
ΔT(r,t)= σ I 0 4πκ [ 1 r + 1 r exp( r r c )cos( Ωt r r c ) ].
2 U(r,t)+ k 2 [1+W(r,t)] 2 U(r,t)=0,
W(r,t)= σ I 0 4πκ [ 1 r + 1 r exp( r r c )cos( Ωt r r c ) ].
lim r U k ( r , t ) ~ e i k z + e i | k | r r f k ( θ , t ) ,
f k ( 1 ) ( θ , t ) = 1 4 π W ( r , t ) e i Δ k r d r = σ I 0 8 π κ n 0 n T [ 2 | Δ k | 2 + 2 | Δ k | 2 | Δ k | 4 + 4 / r c 4 cos ( Ω t ) + 4 / r c 2 | Δ k | 4 + 4 / r c 4 sin ( Ω t ) ]
σ s c ( t ) = 2 π 0 π [ f k ( 1 ) ( θ , t ) ] 2 sin θ d θ = 4 π k Im f k ( 2 ) ( 0 , t ) .
Σ ( φ c , t ) = σ s c ( t ) 2 π 0 φ c [ f k ( 1 ) ( θ , t ) ] 2 sin θ d θ ,
U(r,t)= dkA(k) U k (r,t) ~ U inc (r)+ U sc (r,t).
U inc (r)= dk A(k) e ikr
U sc (r,t)= e i| k |r r dkA(k) f k (θ,t)
A(k)={ e ik r 0 /| r r 0 |for φ φ f 0for φ > φ f ,
σ sc (t)= J sc (π,t)/ J inc (π),
J sc (φ,t)=(1/2)[ 2π 0 φ U sc (r,t) U inc (r) * sinθdθ+c.c. ] J inc (φ)=2π 0 φ U inc (r) U inc (r) * sinθdθ.
Σ ( φ c ,t)=[ σ sc (t) J inc ( φ c ) J sc ( φ c ,t) ]/ J inc (π),
Σ ( φ c ,t)=C( φ c )+ Y in ( φ c )cos(Ωt)+ Y out ( φ c )sin(Ωt),

Metrics