Abstract

Current optical manipulation techniques rely on carefully engineered setups and samples. Although similar conditions are routinely met in research laboratories, it is still a challenge to manipulate microparticles when the environment is not well controlled and known a priori, since optical imperfections and scattering limit the applicability of this technique to real-life situations, such as in biomedical or microfluidic applications. Nonetheless, scattering of coherent light by disordered structures gives rise to speckles, random diffraction patterns with well-defined statistical properties. Here, we experimentally demonstrate how speckle fields can become a versatile tool to efficiently perform fundamental optical manipulation tasks such as trapping, guiding and sorting. We anticipate that the simplicity of these “speckle optical tweezers” will greatly broaden the perspectives of optical manipulation for real-life applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971).
    [CrossRef]
  3. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [CrossRef]
  4. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [CrossRef]
  5. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [CrossRef] [PubMed]
  6. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [CrossRef] [PubMed]
  7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
    [CrossRef] [PubMed]
  8. A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
    [CrossRef] [PubMed]
  9. E. R. Dufresne and D. G. Grier, “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
    [CrossRef]
  10. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
    [CrossRef] [PubMed]
  11. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32(9), 1144–1146 (2007).
    [CrossRef] [PubMed]
  12. K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104(2), 028302 (2010).
    [CrossRef] [PubMed]
  13. I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
    [CrossRef]
  14. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
    [CrossRef]
  15. S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9(10), 3527–3531 (2009).
    [CrossRef] [PubMed]
  16. V. Demergis and E. L. Florin, “High precision and continuous optical transport using a standing wave optical line trap,” Opt. Express 19(21), 20833–20848 (2011).
    [CrossRef] [PubMed]
  17. M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett. 100(5), 051103 (2012).
    [CrossRef]
  18. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [CrossRef]
  19. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
    [CrossRef] [PubMed]
  20. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976).
    [CrossRef]
  21. D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle field,” Eur. Phys. J. D 7(3), 373–377 (1999).
    [CrossRef]
  22. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
    [CrossRef]
  23. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
    [CrossRef] [PubMed]
  24. J. P. Staforelli, J. M. Brito, E. Vera, P. Solano, and A. A. Lencina, “A clustered speckle approach to optical trapping,” Opt. Commun. 283(23), 4722–4726 (2010).
    [CrossRef]
  25. R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, and S. U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter 8(9), 2714–2723 (2012).
    [CrossRef]
  26. K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics 6(12), 834–837 (2012).
    [CrossRef]
  27. F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 022125 (2013).
    [CrossRef] [PubMed]
  28. F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
    [CrossRef]
  29. G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014).
    [CrossRef] [PubMed]
  30. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [CrossRef]
  31. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
    [CrossRef] [PubMed]
  32. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett. 74(9), 1504–1507 (1995).
    [CrossRef] [PubMed]
  33. S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett. 94(11), 110601 (2005).
    [CrossRef] [PubMed]
  34. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [CrossRef]
  35. J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
    [CrossRef]
  36. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Co. Publishers, Greenwood Village, 2007).
  37. L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402(6763), 785–787 (1999).
    [CrossRef]
  38. A. Callegari, M. Mijalkov, A. B. Gököz, and G. Volpe, “Computational toolbox for optical tweezers in geometrical optics,” arXiv:1402.5439 (2014).
  39. G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013).
    [CrossRef]
  40. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
    [CrossRef]
  41. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Springer, New York, 1983).
  42. P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep. 361(2-4), 57–265 (2002).
    [CrossRef]
  43. P. Hänggi and F. Marchesoni, “Artificial Brownian motors: Controlling transport on the nanoscale,” Rev. Mod. Phys. 81(1), 387–442 (2009).
    [CrossRef]
  44. F. Marchesoni, “Transport properties in disordered ratchet potentials,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(3), 2492–2495 (1997).
    [CrossRef]
  45. J. Rousselet, L. Salome, A. Ajdari, and J. Prost, “Directional motion of Brownian particles induced by a periodic asymmetric potential,” Nature 370(6489), 446–447 (1994).
    [CrossRef] [PubMed]
  46. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
    [CrossRef] [PubMed]
  47. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
    [CrossRef] [PubMed]

2014

G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014).
[CrossRef] [PubMed]

2013

F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 022125 (2013).
[CrossRef] [PubMed]

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013).
[CrossRef]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

2012

M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett. 100(5), 051103 (2012).
[CrossRef]

R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, and S. U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter 8(9), 2714–2723 (2012).
[CrossRef]

K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics 6(12), 834–837 (2012).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[CrossRef] [PubMed]

2011

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[CrossRef]

V. Demergis and E. L. Florin, “High precision and continuous optical transport using a standing wave optical line trap,” Opt. Express 19(21), 20833–20848 (2011).
[CrossRef] [PubMed]

2010

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[CrossRef] [PubMed]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[CrossRef]

K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104(2), 028302 (2010).
[CrossRef] [PubMed]

J. P. Staforelli, J. M. Brito, E. Vera, P. Solano, and A. A. Lencina, “A clustered speckle approach to optical trapping,” Opt. Commun. 283(23), 4722–4726 (2010).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

2009

P. Hänggi and F. Marchesoni, “Artificial Brownian motors: Controlling transport on the nanoscale,” Rev. Mod. Phys. 81(1), 387–442 (2009).
[CrossRef]

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9(10), 3527–3531 (2009).
[CrossRef] [PubMed]

2008

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

2007

2006

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[CrossRef]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

2005

S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett. 94(11), 110601 (2005).
[CrossRef] [PubMed]

2003

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

2002

P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep. 361(2-4), 57–265 (2002).
[CrossRef]

2000

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

1999

L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402(6763), 785–787 (1999).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
[CrossRef] [PubMed]

D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle field,” Eur. Phys. J. D 7(3), 373–377 (1999).
[CrossRef]

1998

E. R. Dufresne and D. G. Grier, “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[CrossRef]

1997

F. Marchesoni, “Transport properties in disordered ratchet potentials,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(3), 2492–2495 (1997).
[CrossRef]

1996

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[CrossRef]

1995

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett. 74(9), 1504–1507 (1995).
[CrossRef] [PubMed]

1994

J. Rousselet, L. Salome, A. Ajdari, and J. Prost, “Directional motion of Brownian particles induced by a periodic asymmetric potential,” Nature 370(6489), 446–447 (1994).
[CrossRef] [PubMed]

1988

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[CrossRef] [PubMed]

1987

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

1976

1971

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971).
[CrossRef]

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Ajdari, A.

J. Rousselet, L. Salome, A. Ajdari, and J. Prost, “Directional motion of Brownian particles induced by a periodic asymmetric potential,” Nature 370(6489), 446–447 (1994).
[CrossRef] [PubMed]

Albaladejo, S.

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9(10), 3527–3531 (2009).
[CrossRef] [PubMed]

Applegate, R. W.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Bado, P.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Bewerunge, J.

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 022125 (2013).
[CrossRef] [PubMed]

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[CrossRef] [PubMed]

Boiron, D.

D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle field,” Eur. Phys. J. D 7(3), 373–377 (1999).
[CrossRef]

Bourdieu, L. S.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett. 74(9), 1504–1507 (1995).
[CrossRef] [PubMed]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[CrossRef]

Brito, J. M.

J. P. Staforelli, J. M. Brito, E. Vera, P. Solano, and A. A. Lencina, “A clustered speckle approach to optical trapping,” Opt. Commun. 283(23), 4722–4726 (2010).
[CrossRef]

Capellmann, R. F.

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

Castañeda-Priego, R.

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

Cižmár, T.

M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett. 100(5), 051103 (2012).
[CrossRef]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[CrossRef]

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[CrossRef]

Dalle-Ferrier, C.

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, and S. U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter 8(9), 2714–2723 (2012).
[CrossRef]

Demergis, V.

Desyatnikov, A. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[CrossRef] [PubMed]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[CrossRef]

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32(9), 1144–1146 (2007).
[CrossRef] [PubMed]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Di Leonardo, R.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[CrossRef] [PubMed]

Dogariu, A.

K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics 6(12), 834–837 (2012).
[CrossRef]

Douglass, K. M.

K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics 6(12), 834–837 (2012).
[CrossRef]

Dufresne, E. R.

E. R. Dufresne and D. G. Grier, “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[CrossRef]

Dugan, M. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Dykman, M.

L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402(6763), 785–787 (1999).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971).
[CrossRef]

Egelhaaf, S. U.

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 022125 (2013).
[CrossRef] [PubMed]

R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, and S. U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter 8(9), 2714–2723 (2012).
[CrossRef]

Evers, F.

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 022125 (2013).
[CrossRef] [PubMed]

Faucheux, L. P.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett. 74(9), 1504–1507 (1995).
[CrossRef] [PubMed]

Feng, S.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[CrossRef] [PubMed]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

Florin, E. L.

Fournier, J. M.

D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle field,” Eur. Phys. J. D 7(3), 373–377 (1999).
[CrossRef]

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[CrossRef] [PubMed]

Garcés-Chávez, V.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[CrossRef]

Gigan, S.

G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014).
[CrossRef] [PubMed]

Golding, B.

L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402(6763), 785–787 (1999).
[CrossRef]

Goodman, J. W.

Grier, D. G.

K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104(2), 028302 (2010).
[CrossRef] [PubMed]

S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett. 94(11), 110601 (2005).
[CrossRef] [PubMed]

E. R. Dufresne and D. G. Grier, “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[CrossRef]

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[CrossRef]

Grynberg, G.

D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle field,” Eur. Phys. J. D 7(3), 373–377 (1999).
[CrossRef]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

Guidoni, L.

D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle field,” Eur. Phys. J. D 7(3), 373–377 (1999).
[CrossRef]

Haist, T.

Hanes, R. D. L.

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 022125 (2013).
[CrossRef] [PubMed]

R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, and S. U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter 8(9), 2714–2723 (2012).
[CrossRef]

Hänggi, P.

P. Hänggi and F. Marchesoni, “Artificial Brownian motors: Controlling transport on the nanoscale,” Rev. Mod. Phys. 81(1), 387–442 (2009).
[CrossRef]

Heuer, A.

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 022125 (2013).
[CrossRef] [PubMed]

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[CrossRef] [PubMed]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[CrossRef]

Jenkins, M. C.

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, and S. U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter 8(9), 2714–2723 (2012).
[CrossRef]

Jonás, A.

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Kane, C.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

Kaplan, P. D.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett. 74(9), 1504–1507 (1995).
[CrossRef] [PubMed]

Kivshar, Y. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[CrossRef]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[CrossRef] [PubMed]

Krolikowski, W.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[CrossRef] [PubMed]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[CrossRef]

Ladadwa, I.

F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 022125 (2013).
[CrossRef] [PubMed]

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

Ladavac, K.

S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett. 94(11), 110601 (2005).
[CrossRef] [PubMed]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

Lee, P. A.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

Lee, S. H.

S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett. 94(11), 110601 (2005).
[CrossRef] [PubMed]

Lencina, A. A.

J. P. Staforelli, J. M. Brito, E. Vera, P. Solano, and A. A. Lencina, “A clustered speckle approach to optical trapping,” Opt. Commun. 283(23), 4722–4726 (2010).
[CrossRef]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

Leykam, D.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[CrossRef]

Libchaber, A. J.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett. 74(9), 1504–1507 (1995).
[CrossRef] [PubMed]

MacDonald, M.

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

Marchesoni, F.

P. Hänggi and F. Marchesoni, “Artificial Brownian motors: Controlling transport on the nanoscale,” Rev. Mod. Phys. 81(1), 387–442 (2009).
[CrossRef]

F. Marchesoni, “Transport properties in disordered ratchet potentials,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(3), 2492–2495 (1997).
[CrossRef]

Marqués, M. I.

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9(10), 3527–3531 (2009).
[CrossRef] [PubMed]

Marr, D. W. M.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

McCann, L. I.

L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402(6763), 785–787 (1999).
[CrossRef]

Mennerat-Robilliard, C.

D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle field,” Eur. Phys. J. D 7(3), 373–377 (1999).
[CrossRef]

Milne, G.

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

Oakey, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[CrossRef]

Polin, M.

S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett. 94(11), 110601 (2005).
[CrossRef] [PubMed]

Prost, J.

J. Rousselet, L. Salome, A. Ajdari, and J. Prost, “Directional motion of Brownian particles induced by a periodic asymmetric potential,” Nature 370(6489), 446–447 (1994).
[CrossRef] [PubMed]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Ramos-García, R.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[CrossRef]

Reicherter, M.

Reimann, P.

P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep. 361(2-4), 57–265 (2002).
[CrossRef]

Rhodes, D.

Ricárdez-Vargas, I.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[CrossRef]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Rode, A. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[CrossRef]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[CrossRef] [PubMed]

Rodríguez-Montero, P.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[CrossRef]

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[CrossRef] [PubMed]

Rousselet, J.

J. Rousselet, L. Salome, A. Ajdari, and J. Prost, “Directional motion of Brownian particles induced by a periodic asymmetric potential,” Nature 370(6489), 446–447 (1994).
[CrossRef] [PubMed]

Sáenz, J. J.

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9(10), 3527–3531 (2009).
[CrossRef] [PubMed]

Said, A. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Salome, L.

J. Rousselet, L. Salome, A. Ajdari, and J. Prost, “Directional motion of Brownian particles induced by a periodic asymmetric potential,” Nature 370(6489), 446–447 (1994).
[CrossRef] [PubMed]

Salomon, C.

D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle field,” Eur. Phys. J. D 7(3), 373–377 (1999).
[CrossRef]

Scheffold, F.

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9(10), 3527–3531 (2009).
[CrossRef] [PubMed]

Schmiedeberg, M.

R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, and S. U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter 8(9), 2714–2723 (2012).
[CrossRef]

Šerý, M.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[CrossRef]

Shvedov, V. G.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[CrossRef] [PubMed]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[CrossRef]

Šiler, M.

M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett. 100(5), 051103 (2012).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[CrossRef]

Solano, P.

J. P. Staforelli, J. M. Brito, E. Vera, P. Solano, and A. A. Lencina, “A clustered speckle approach to optical trapping,” Opt. Commun. 283(23), 4722–4726 (2010).
[CrossRef]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Squier, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Staforelli, J. P.

J. P. Staforelli, J. M. Brito, E. Vera, P. Solano, and A. A. Lencina, “A clustered speckle approach to optical trapping,” Opt. Commun. 283(23), 4722–4726 (2010).
[CrossRef]

Stone, A. D.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

Sukhov, S.

K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics 6(12), 834–837 (2012).
[CrossRef]

Tiziani, H. J.

Vera, E.

J. P. Staforelli, J. M. Brito, E. Vera, P. Solano, and A. A. Lencina, “A clustered speckle approach to optical trapping,” Opt. Commun. 283(23), 4722–4726 (2010).
[CrossRef]

Vestad, T.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Volke-Sepúlveda, K.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[CrossRef]

Volpe, G.

G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014).
[CrossRef] [PubMed]

G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014).
[CrossRef] [PubMed]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013).
[CrossRef]

G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013).
[CrossRef]

Wagemann, E. U.

Xiao, K.

K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104(2), 028302 (2010).
[CrossRef] [PubMed]

Zemánek, P.

M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett. 100(5), 051103 (2012).
[CrossRef]

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[CrossRef]

Zunke, C.

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 022125 (2013).
[CrossRef] [PubMed]

Am. J. Phys.

G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013).
[CrossRef]

Appl. Phys. Lett.

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971).
[CrossRef]

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[CrossRef]

M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett. 100(5), 051103 (2012).
[CrossRef]

Electrophoresis

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Eur. Phys. J. D

D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle field,” Eur. Phys. J. D 7(3), 373–377 (1999).
[CrossRef]

Eur. Phys. J. Spec. Top.

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

J. Colloid Interface Sci.

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[CrossRef]

J. Opt.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[CrossRef]

J. Opt. Soc. Am.

Lab Chip

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[CrossRef] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Nano Lett.

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9(10), 3527–3531 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

Nat. Photonics

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[CrossRef]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics 6(12), 834–837 (2012).
[CrossRef]

Nature

L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402(6763), 785–787 (1999).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

J. Rousselet, L. Salome, A. Ajdari, and J. Prost, “Directional motion of Brownian particles induced by a periodic asymmetric potential,” Nature 370(6489), 446–447 (1994).
[CrossRef] [PubMed]

Opt. Commun.

J. P. Staforelli, J. M. Brito, E. Vera, P. Solano, and A. A. Lencina, “A clustered speckle approach to optical trapping,” Opt. Commun. 283(23), 4722–4726 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep. 361(2-4), 57–265 (2002).
[CrossRef]

Phys. Rev. B

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 022125 (2013).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

F. Marchesoni, “Transport properties in disordered ratchet potentials,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(3), 2492–2495 (1997).
[CrossRef]

Phys. Rev. Lett.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[CrossRef] [PubMed]

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett. 74(9), 1504–1507 (1995).
[CrossRef] [PubMed]

S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett. 94(11), 110601 (2005).
[CrossRef] [PubMed]

K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104(2), 028302 (2010).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Rev. Mod. Phys.

P. Hänggi and F. Marchesoni, “Artificial Brownian motors: Controlling transport on the nanoscale,” Rev. Mod. Phys. 81(1), 387–442 (2009).
[CrossRef]

Rev. Sci. Instrum.

E. R. Dufresne and D. G. Grier, “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[CrossRef]

Sci. Rep.

G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014).
[CrossRef] [PubMed]

Science

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Soft Matter

R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, and S. U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter 8(9), 2714–2723 (2012).
[CrossRef]

Other

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Springer, New York, 1983).

A. Callegari, M. Mijalkov, A. B. Gököz, and G. Volpe, “Computational toolbox for optical tweezers in geometrical optics,” arXiv:1402.5439 (2014).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Co. Publishers, Greenwood Village, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Speckle optical tweezers setup. (a) Schematic of the speckle optical tweezers setup. A laser beam (λ = 532 nm) and incoherent light from an LED (λ = 625 nm) are coupled into a multimode optical fiber (105-µm core, NA = 0.22) making use of a dichroic mirror (DM) and a lens (L1). The fiber delivers the light to a microfluidic channel (S) where aqueous dispersions of particles are flowed by a syringe pusher. The fiber output is mounted on a two-axis mechanical stage, which guarantees the possibility of translating the speckle vertically and perpendicularly to the flow. The particles’ trajectories are tracked by digital video microscopy using the image projected by a microscope objective (20X, NA = 0.5) and a tube lens (L2) onto a color CMOS camera. (b) A typical speckle pattern for optical manipulation as observed on the camera and (c) its normalized spatial autocorrelation function, which permits us to characterize the average speckle grain size as the FHWM of the autocorrelation along the axes (solid lines).

Fig. 2
Fig. 2

Optical forces in a static speckle field. (a-c) The experimental trajectories (solid lines) show progressive confinement of a silica bead (D = 2.06 ± 0.05 µm, np = 1.42) in water (nm = 1.33) as a function of the increasing average speckle intensity, respectively <I> = 0.12 µW/µm2 in (a), <I> = 1.43 µW/µm2 in (b), and <I> = 5.77 µW/µm2 in (c). The backgrounds are the corresponding images of the speckle patterns generated by mode-mixing in a multimode optical fiber. (d) Calculated force field (arrows) exerted on a silica bead in a simulated speckle pattern (background). (e-g) Corresponding simulated trajectories (solid lines) of silica particles moving in speckle fields of the same average intensity as in (a-c). The dashed lines delimit the area corresponding to the force field distribution in (d). The average calculated force exerted by the speckle field is (e) <F> = 0.14 fN, (F) <F> = 1.82 fN, and (g) <F> = 7.3 fN. All trajectories are recorded or simulated during 420 s.

Fig. 3
Fig. 3

Sieving in a microfluidic flow by a static speckle field. (a-f) Time-lapse snapshots of the flow of two classes of particles with similar diameter D ≈2 µm but different refractive index in a microfluidic speckle sieve (flow speed Vf = 3.01 ± 0.12 µm/s): silica (brighter particles, D = 2.06 ± 0.05 µm and np = 1.42) and melamine (darker particles, D = 2.05 ± 0.04 µm and np = 1.68). The arrow in (a) indicates the direction of the flow. A static speckle pattern (on from (b), <I> = 5.77 µW/µm2), traps the particles with higher refractive index (blue circles) while it lets the particles with lower refractive index (green circles) go away with the flow. (g-h) Comparison of the average particle speed <Vp> in the speckle sieve (g) for particles of similar diameter (D ≈2 µm) but different refractive index (green squares, np = 1.42, and blue circles, np = 1.68), and (h) for particles of similar refractive index (np = 1.42), but different diameter (green squares, D = 2.06 ± 0.05 µm, and red triangles, D = 4.99 ± 0.22 µm), as a function of the average speckle intensity and of the fluid flow (Vf = 3.01 ± 0.12 µm/s, Vf = 4.58 ± 0.26 µm/s and Vf = 6.20 ± 0.68 µm/s). The shaded areas represent one standard deviation around the average values.

Fig. 4
Fig. 4

Guiding by a ratcheting speckle. (a-c) Time-lapse snapshots of the motion of a melamine particle (blue circles) and a silica particle (green circles) with similar diameter D ≈2 µm in a ratcheting speckle in the absence of flow (<I> = 7.85 µW/µm2). The shift of the speckle, which is visible in the background, is induced by dragging the fiber with a mechanical stage first (from (a) to (b)) slowly in the direction of the arrow shown in (a) and then (from (b) to (c)) fast back. (d) Speckle pattern shift as tracked on a speckle grain and (e) particle displacements as a function of time in the direction parallel to the speckle pattern shift (solid blue and green lines) and in the orthogonal direction (dashed blue and green lines), respectively for the melamine and the silica particle. The speckle pattern repeatedly shifts first slowly in the positive direction and then fast to the initial position in 5.6 s cycles. The dashed lines delimit the time of absence of motion due to the motor backlash.

Fig. 5
Fig. 5

Sorting in a microfluidic flow by a ratcheting speckle field. (a-g) Angular distribution of two classes of particles with similar diameter (D ≈2 µm) but different refractive index (np = 1.42, green areas, and np = 1.68, blue areas) in a microfluidic speckle sorter for increasing flow speeds Vf (Vf = 3.01 ± 0.12 µm/s from (a) to (c) and Vf = 6.20 ± 0.68 µm/s from (d) to (g)) and average speckle intensities <I>. The flow is directed along the 0° line, while the speckle shift is directed along the 90° line. The areas represent one standard deviation of the particle spread around the average value. (h-n) Same as (a-g) using as selection parameter the particle size (D = 2.06 ± 0.05 µm, green areas, and D = 4.99 ± 0.22 µm, red areas) rather than their refractive index, here kept constant (np = 1.42).

Metrics