Abstract

This paper presents the design, fabrication and characterization of a broadband miniature fiber optic ultrasound generator based on photoacoustic (PA) ultrasound generation principle for biomedical ultrasound imaging and ultrasound non-destructive test (NDT) applications. A novel PA generation material, gold nanocomposite, was synthesized by directly reducing gold nanoparticles within polydimethylsiloxane (PDMS) through a one-pot protocol. The fiber optic ultrasound generator was fabricated by coating the gold nanocomposite on the tip of the optical fiber. The efficiency of the PA generation using gold nanocomposite was increased 105 compared to using aluminum thin film and 103 compared to using graphite mixed within epoxy. The ultrasound profile and the acoustic distribution have been characterized. The amplitude of the generated ultrasound signal was as high as 0.64 MPa and the bandwidth was more than 20 MHz. This paper also demonstrated its capability for ultrasound imaging of a tissue specimen.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34(2), 201–207 (2009).
    [CrossRef] [PubMed]
  2. A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries,” NDT Int. 43(2), 78–85 (2010).
    [CrossRef]
  3. G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT Int. 43(7), 555–567 (2010).
    [CrossRef]
  4. F. S. Foster, J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares, and A. Needles, “A new 15-50 MHz array-based micro-ultrasound scanner for preclinical imaging,” Ultrasound Med. Biol. 35(10), 1700–1708 (2009).
    [CrossRef] [PubMed]
  5. B. Jadidian, N. M. Hagh, A. A. Winder, and A. Safari, “25 MHz ultrasonic transducers with lead-free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 368–378 (2009).
    [CrossRef] [PubMed]
  6. K. A. Snook, C. H. Hu, T. R. Shrout, and K. K. Shung, “High-frequency ultrasound annular-array imaging. Part I: array design and fabrication,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 300–308 (2006).
    [CrossRef] [PubMed]
  7. E. J. Gottlieb, J. M. Cannata, C. H. Hu, and K. K. Shung, “Development of a high-frequency (> 50 MHz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(5), 1037–1045 (2006).
    [CrossRef] [PubMed]
  8. X. Zou, N. Wu, Y. Tian, Y. Zhang, and X. Wang, “Polydimethylsiloxane thin film characterization using all-optical photoacoustic mechanism,” Appl. Opt. 52(25), 6239–6244 (2013).
    [CrossRef] [PubMed]
  9. Y. Tian, N. Wu, X. Zou, H. Felemban, C. Cao, and X. Wang, “Fiber-optic ultrasound generator using periodic gold nanopores fabricated by a focused ion beam,” Opt. Eng. 52(6), 065005 (2013).
    [CrossRef]
  10. E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
    [CrossRef] [PubMed]
  11. Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
    [CrossRef]
  12. N. Wu, Y. Tian, X. Zou, V. Silva, A. Chery, and X. Wang, “High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite,” J. Opt. Soc. Am. B 29(8), 2016–2020 (2012).
    [CrossRef]
  13. Y. Hou, J. S. Kim, S. W. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
    [CrossRef] [PubMed]
  14. H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
    [CrossRef] [PubMed]
  15. T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
    [CrossRef] [PubMed]
  16. H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep.  2, 989 (2012).
  17. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  18. D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8(5), 471–486 (2011).
    [CrossRef]
  19. K. Seshan, Handbook of Thin Film Deposition (William Andrew, 2012).
  20. V. Pathak, V. Singh, and Y. Sanjay, “Ultrasound as a modern tool for carcass evaluation and meat processing: A review,” Int. J. Meat Sci. 1(2), 83–92 (2011).
    [CrossRef]

2013 (2)

Y. Tian, N. Wu, X. Zou, H. Felemban, C. Cao, and X. Wang, “Fiber-optic ultrasound generator using periodic gold nanopores fabricated by a focused ion beam,” Opt. Eng. 52(6), 065005 (2013).
[CrossRef]

X. Zou, N. Wu, Y. Tian, Y. Zhang, and X. Wang, “Polydimethylsiloxane thin film characterization using all-optical photoacoustic mechanism,” Appl. Opt. 52(25), 6239–6244 (2013).
[CrossRef] [PubMed]

2012 (2)

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep.  2, 989 (2012).

N. Wu, Y. Tian, X. Zou, V. Silva, A. Chery, and X. Wang, “High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite,” J. Opt. Soc. Am. B 29(8), 2016–2020 (2012).
[CrossRef]

2011 (2)

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8(5), 471–486 (2011).
[CrossRef]

V. Pathak, V. Singh, and Y. Sanjay, “Ultrasound as a modern tool for carcass evaluation and meat processing: A review,” Int. J. Meat Sci. 1(2), 83–92 (2011).
[CrossRef]

2010 (3)

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[CrossRef] [PubMed]

A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries,” NDT Int. 43(2), 78–85 (2010).
[CrossRef]

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT Int. 43(7), 555–567 (2010).
[CrossRef]

2009 (3)

F. S. Foster, J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares, and A. Needles, “A new 15-50 MHz array-based micro-ultrasound scanner for preclinical imaging,” Ultrasound Med. Biol. 35(10), 1700–1708 (2009).
[CrossRef] [PubMed]

B. Jadidian, N. M. Hagh, A. A. Winder, and A. Safari, “25 MHz ultrasonic transducers with lead-free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 368–378 (2009).
[CrossRef] [PubMed]

A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34(2), 201–207 (2009).
[CrossRef] [PubMed]

2008 (1)

Y. Hou, J. S. Kim, S. W. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[CrossRef] [PubMed]

2007 (1)

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

2006 (3)

K. A. Snook, C. H. Hu, T. R. Shrout, and K. K. Shung, “High-frequency ultrasound annular-array imaging. Part I: array design and fabrication,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 300–308 (2006).
[CrossRef] [PubMed]

E. J. Gottlieb, J. M. Cannata, C. H. Hu, and K. K. Shung, “Development of a high-frequency (> 50 MHz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(5), 1037–1045 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

2003 (1)

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[CrossRef] [PubMed]

2001 (1)

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[CrossRef] [PubMed]

Ashkenazi, S.

Y. Hou, J. S. Kim, S. W. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[CrossRef] [PubMed]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

Baac, H. W.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep.  2, 989 (2012).

Baerwald, A.

A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34(2), 201–207 (2009).
[CrossRef] [PubMed]

Biagi, E.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[CrossRef] [PubMed]

Buma, T.

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[CrossRef] [PubMed]

Cannata, J. M.

E. J. Gottlieb, J. M. Cannata, C. H. Hu, and K. K. Shung, “Development of a high-frequency (> 50 MHz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(5), 1037–1045 (2006).
[CrossRef] [PubMed]

Cao, C.

Y. Tian, N. Wu, X. Zou, H. Felemban, C. Cao, and X. Wang, “Fiber-optic ultrasound generator using periodic gold nanopores fabricated by a focused ion beam,” Opt. Eng. 52(6), 065005 (2013).
[CrossRef]

Cawley, P.

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT Int. 43(7), 555–567 (2010).
[CrossRef]

Chaggares, C.

F. S. Foster, J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares, and A. Needles, “A new 15-50 MHz array-based micro-ultrasound scanner for preclinical imaging,” Ultrasound Med. Biol. 35(10), 1700–1708 (2009).
[CrossRef] [PubMed]

Chen, S.-L.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[CrossRef] [PubMed]

Chen, Y.-C.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep.  2, 989 (2012).

Chery, A.

Dauk, S.

A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34(2), 201–207 (2009).
[CrossRef] [PubMed]

Drinkwater, B. W.

A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries,” NDT Int. 43(2), 78–85 (2010).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Felemban, H.

Y. Tian, N. Wu, X. Zou, H. Felemban, C. Cao, and X. Wang, “Fiber-optic ultrasound generator using periodic gold nanopores fabricated by a focused ion beam,” Opt. Eng. 52(6), 065005 (2013).
[CrossRef]

Foster, F. S.

F. S. Foster, J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares, and A. Needles, “A new 15-50 MHz array-based micro-ultrasound scanner for preclinical imaging,” Ultrasound Med. Biol. 35(10), 1700–1708 (2009).
[CrossRef] [PubMed]

Gottlieb, E. J.

E. J. Gottlieb, J. M. Cannata, C. H. Hu, and K. K. Shung, “Development of a high-frequency (> 50 MHz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(5), 1037–1045 (2006).
[CrossRef] [PubMed]

Guo, L. J.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep.  2, 989 (2012).

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[CrossRef] [PubMed]

Y. Hou, J. S. Kim, S. W. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[CrossRef] [PubMed]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

Gusman, A. M.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8(5), 471–486 (2011).
[CrossRef]

Hagh, N. M.

B. Jadidian, N. M. Hagh, A. A. Winder, and A. Safari, “25 MHz ultrasonic transducers with lead-free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 368–378 (2009).
[CrossRef] [PubMed]

Hart, A. J.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep.  2, 989 (2012).

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[CrossRef] [PubMed]

Hirson, D.

F. S. Foster, J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares, and A. Needles, “A new 15-50 MHz array-based micro-ultrasound scanner for preclinical imaging,” Ultrasound Med. Biol. 35(10), 1700–1708 (2009).
[CrossRef] [PubMed]

Hou, Y.

Y. Hou, J. S. Kim, S. W. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[CrossRef] [PubMed]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

Hu, C. H.

K. A. Snook, C. H. Hu, T. R. Shrout, and K. K. Shung, “High-frequency ultrasound annular-array imaging. Part I: array design and fabrication,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 300–308 (2006).
[CrossRef] [PubMed]

E. J. Gottlieb, J. M. Cannata, C. H. Hu, and K. K. Shung, “Development of a high-frequency (> 50 MHz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(5), 1037–1045 (2006).
[CrossRef] [PubMed]

Huang, S. W.

Y. Hou, J. S. Kim, S. W. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[CrossRef] [PubMed]

Huang, S.-W.

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

Hunter, A. J.

A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries,” NDT Int. 43(2), 78–85 (2010).
[CrossRef]

Ireland, R.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8(5), 471–486 (2011).
[CrossRef]

Jadidian, B.

B. Jadidian, N. M. Hagh, A. A. Winder, and A. Safari, “25 MHz ultrasonic transducers with lead-free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 368–378 (2009).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Kanthan, R.

A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34(2), 201–207 (2009).
[CrossRef] [PubMed]

Karimzada, M.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8(5), 471–486 (2011).
[CrossRef]

Kim, J. S.

Y. Hou, J. S. Kim, S. W. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[CrossRef] [PubMed]

Kim, J.-S.

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Lee, K.-T.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep.  2, 989 (2012).

Ling, T.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[CrossRef] [PubMed]

Loh, K. J.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8(5), 471–486 (2011).
[CrossRef]

Lukacs, M.

F. S. Foster, J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares, and A. Needles, “A new 15-50 MHz array-based micro-ultrasound scanner for preclinical imaging,” Ultrasound Med. Biol. 35(10), 1700–1708 (2009).
[CrossRef] [PubMed]

Margheri, F.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[CrossRef] [PubMed]

Maxwell, A.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep.  2, 989 (2012).

Mehi, J.

F. S. Foster, J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares, and A. Needles, “A new 15-50 MHz array-based micro-ultrasound scanner for preclinical imaging,” Ultrasound Med. Biol. 35(10), 1700–1708 (2009).
[CrossRef] [PubMed]

Menichelli, D.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[CrossRef] [PubMed]

Nagy, P. B.

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT Int. 43(7), 555–567 (2010).
[CrossRef]

Needles, A.

F. S. Foster, J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares, and A. Needles, “A new 15-50 MHz array-based micro-ultrasound scanner for preclinical imaging,” Ultrasound Med. Biol. 35(10), 1700–1708 (2009).
[CrossRef] [PubMed]

O’Donnell, M.

Y. Hou, J. S. Kim, S. W. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[CrossRef] [PubMed]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[CrossRef] [PubMed]

Ok, J. G.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep.  2, 989 (2012).

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[CrossRef] [PubMed]

Park, H. J.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[CrossRef] [PubMed]

Pathak, V.

V. Pathak, V. Singh, and Y. Sanjay, “Ultrasound as a modern tool for carcass evaluation and meat processing: A review,” Int. J. Meat Sci. 1(2), 83–92 (2011).
[CrossRef]

Ryu, D.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8(5), 471–486 (2011).
[CrossRef]

Safari, A.

B. Jadidian, N. M. Hagh, A. A. Winder, and A. Safari, “25 MHz ultrasonic transducers with lead-free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 368–378 (2009).
[CrossRef] [PubMed]

Sanjay, Y.

V. Pathak, V. Singh, and Y. Sanjay, “Ultrasound as a modern tool for carcass evaluation and meat processing: A review,” Int. J. Meat Sci. 1(2), 83–92 (2011).
[CrossRef]

Scruby, C.

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT Int. 43(7), 555–567 (2010).
[CrossRef]

Shrout, T. R.

K. A. Snook, C. H. Hu, T. R. Shrout, and K. K. Shung, “High-frequency ultrasound annular-array imaging. Part I: array design and fabrication,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 300–308 (2006).
[CrossRef] [PubMed]

Shung, K. K.

K. A. Snook, C. H. Hu, T. R. Shrout, and K. K. Shung, “High-frequency ultrasound annular-array imaging. Part I: array design and fabrication,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 300–308 (2006).
[CrossRef] [PubMed]

E. J. Gottlieb, J. M. Cannata, C. H. Hu, and K. K. Shung, “Development of a high-frequency (> 50 MHz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(5), 1037–1045 (2006).
[CrossRef] [PubMed]

Silva, V.

Singh, J.

A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34(2), 201–207 (2009).
[CrossRef] [PubMed]

Singh, V.

V. Pathak, V. Singh, and Y. Sanjay, “Ultrasound as a modern tool for carcass evaluation and meat processing: A review,” Int. J. Meat Sci. 1(2), 83–92 (2011).
[CrossRef]

Snook, K. A.

K. A. Snook, C. H. Hu, T. R. Shrout, and K. K. Shung, “High-frequency ultrasound annular-array imaging. Part I: array design and fabrication,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 300–308 (2006).
[CrossRef] [PubMed]

Spisar, M.

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[CrossRef] [PubMed]

Sposito, G.

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT Int. 43(7), 555–567 (2010).
[CrossRef]

Tian, Y.

Wang, X.

Ward, C.

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT Int. 43(7), 555–567 (2010).
[CrossRef]

White, C.

F. S. Foster, J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares, and A. Needles, “A new 15-50 MHz array-based micro-ultrasound scanner for preclinical imaging,” Ultrasound Med. Biol. 35(10), 1700–1708 (2009).
[CrossRef] [PubMed]

Wilcox, P. D.

A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries,” NDT Int. 43(2), 78–85 (2010).
[CrossRef]

Winder, A. A.

B. Jadidian, N. M. Hagh, A. A. Winder, and A. Safari, “25 MHz ultrasonic transducers with lead-free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 368–378 (2009).
[CrossRef] [PubMed]

Won Baac, H.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[CrossRef] [PubMed]

Wu, N.

Xu, Z.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep.  2, 989 (2012).

Yaghmaie, F.

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8(5), 471–486 (2011).
[CrossRef]

Yoon, E.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep.  2, 989 (2012).

Zhang, Y.

Zou, X.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[CrossRef] [PubMed]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (6)

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[CrossRef] [PubMed]

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[CrossRef] [PubMed]

B. Jadidian, N. M. Hagh, A. A. Winder, and A. Safari, “25 MHz ultrasonic transducers with lead-free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 368–378 (2009).
[CrossRef] [PubMed]

K. A. Snook, C. H. Hu, T. R. Shrout, and K. K. Shung, “High-frequency ultrasound annular-array imaging. Part I: array design and fabrication,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 300–308 (2006).
[CrossRef] [PubMed]

E. J. Gottlieb, J. M. Cannata, C. H. Hu, and K. K. Shung, “Development of a high-frequency (> 50 MHz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(5), 1037–1045 (2006).
[CrossRef] [PubMed]

Y. Hou, J. S. Kim, S. W. Huang, S. Ashkenazi, L. J. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[CrossRef] [PubMed]

Int. J. Meat Sci. (1)

V. Pathak, V. Singh, and Y. Sanjay, “Ultrasound as a modern tool for carcass evaluation and meat processing: A review,” Int. J. Meat Sci. 1(2), 83–92 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

NDT Int. (2)

A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries,” NDT Int. 43(2), 78–85 (2010).
[CrossRef]

G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-destructive techniques for the detection of creep damage in power plant steels,” NDT Int. 43(7), 555–567 (2010).
[CrossRef]

Opt. Eng. (1)

Y. Tian, N. Wu, X. Zou, H. Felemban, C. Cao, and X. Wang, “Fiber-optic ultrasound generator using periodic gold nanopores fabricated by a focused ion beam,” Opt. Eng. 52(6), 065005 (2013).
[CrossRef]

Sci. Rep (1)

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep.  2, 989 (2012).

Smart Struct. Syst. (1)

D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst. 8(5), 471–486 (2011).
[CrossRef]

Ultrasound Med. Biol. (1)

F. S. Foster, J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares, and A. Needles, “A new 15-50 MHz array-based micro-ultrasound scanner for preclinical imaging,” Ultrasound Med. Biol. 35(10), 1700–1708 (2009).
[CrossRef] [PubMed]

Ultrasound Obstet. Gynecol. (1)

A. Baerwald, S. Dauk, R. Kanthan, and J. Singh, “Use of ultrasound biomicroscopy to image human ovaries in vitro,” Ultrasound Obstet. Gynecol. 34(2), 201–207 (2009).
[CrossRef] [PubMed]

Other (1)

K. Seshan, Handbook of Thin Film Deposition (William Andrew, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The structure of the fiber optic ultrasound generator.

Fig. 2
Fig. 2

The microscopic picture of the fiber optic ultrasound generator.

Fig. 3
Fig. 3

Experimental setup for the ultrasonic pulse generation and ultrasonic field distribution. (a) Schematic diagram of the experimental setup. (b) The photo of the experimental setup. (c) Zoomed in photo to illustrate the distance between the generator and the hydrophone.

Fig. 4
Fig. 4

Ultrasound signal generated by the fiber optic ultrasound generator. (a) The profile of a typical generated ultrasound signal. (b) The frequency domain of the generated ultrasound signal.

Fig. 5
Fig. 5

Ultrasonic field distribution in a longitudinal section generated from fiber optic ultrasound generator. (a) Pressure distribution of ultrasonic field. (b) Normalized magnitude distribution of ultrasonic field.

Fig. 6
Fig. 6

Extracted from Fig. 5(b): pressure distribution along the both axial direction and lateral position from the focal point (0 mm, 1.2 mm). (a) Pressure distribution along the axial direction. (b) Pressure distribution along the lateral direction.

Fig. 7
Fig. 7

The photo of the ultrasound imaging experimental setup.

Fig. 8
Fig. 8

The ultrasound imaging of a slice of pork tissue: the ultrasound imaging is obtained by moving the specimen in between the fixed generator and hydrophone. (a) The ultrasound image of a slice of pork tissue. (b) Photo of the tissue specimen (slice of pork tissue).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η= E a E optical ,
E a c B A 0 p 2 (t)dt ,
v= hc (t t w )c+h

Metrics