Abstract

We designed a new image scanner using the reflective optics of a compound eye system that can easily assemble plural imaging optical units (called imaging cells) and is compact with a large depth of field (DOF). Our image scanner is constructed from 32 reflective imaging cells, each of which takes an image of approximately a 10-mm field of view (FOV) that slightly overlap the adjacent imaging cells. The total image is rebuilt by combining the 32 images in post processing. We studied how to fold the optical path in the imaging cells and simplified the structure, resulting in the following three advances of our previous work: 1) greater compactness (50 × 31 mm2 in the cross section), 2) less variable optical characteristics among the imaging cells, and 3) easy assembly thanks to small number of optical components constructing the imaging cell.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Noll and R. A. Tracy, “Application of visible linear array technology to earth observation sensors,” Proc. of Scanners and Imagery Systems for Earth Observation, 0051, 124–131 (1974).
    [CrossRef]
  2. J. A. Toque, Y. Sakatoku, and A. Ide-Ektessabi, “Analytical imaging of cultural heritage paintings using digitally archived images,” Proc. of SPIE-IS&T Electronic Imaging, SPIE 7531, 75310N–1-9 (2010).
    [CrossRef]
  3. J. P. McNaul, “Scanners As Image Input Devices,” Proc. of Industrial Applications of Solid State Image Scanners, SPIE 0145, 58–64 (1989).
  4. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18(24), 24379–24394 (2010).
    [CrossRef] [PubMed]
  5. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO) concept and experimental verification,” Appl. Opt. 40(11), 1806–1813 (2001).
    [CrossRef] [PubMed]
  6. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486(7403), 386–389 (2012).
    [CrossRef] [PubMed]
  7. R. H. Anderson, “Close-up imaging of documents and displays with lens arrays,” Appl. Opt. 18(4), 477–484 (1979).
    [CrossRef] [PubMed]
  8. M. Kawazu and Y. Ogura, “Application of gradient-index fiber arrays to copying machines,” Appl. Opt. 19(7), 1105–1112 (1980).
    [CrossRef] [PubMed]
  9. K. Nagatani, K. Morita, H. Okushiba, S. Kojima, and R. Sakaguchi, US patent 5399850 (1995).
  10. I. Maeda, T. Inokuchi, and T. Miyashita, US patent 4776683 (1988).
  11. H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, N. Fujiyama, E. Niikura, T. Kunieda, and T. Minobe, “Compact image scanner with large depth of field by compound eye system,” Opt. Express 20(12), 13532–13538 (2012).
    [CrossRef] [PubMed]
  12. H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
    [CrossRef]

2013 (1)

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
[CrossRef]

2012 (2)

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486(7403), 386–389 (2012).
[CrossRef] [PubMed]

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, N. Fujiyama, E. Niikura, T. Kunieda, and T. Minobe, “Compact image scanner with large depth of field by compound eye system,” Opt. Express 20(12), 13532–13538 (2012).
[CrossRef] [PubMed]

2010 (1)

2001 (1)

1989 (1)

J. P. McNaul, “Scanners As Image Input Devices,” Proc. of Industrial Applications of Solid State Image Scanners, SPIE 0145, 58–64 (1989).

1980 (1)

1979 (1)

1974 (1)

R. E. Noll and R. A. Tracy, “Application of visible linear array technology to earth observation sensors,” Proc. of Scanners and Imagery Systems for Earth Observation, 0051, 124–131 (1974).
[CrossRef]

Anderson, R. H.

Brady, D. J.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Bräuer, A.

Brückner, A.

Dannberg, P.

Duparré, J.

Feller, S. D.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Fujiyama, N.

Funakura, T.

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
[CrossRef]

Gehm, M. E.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Golish, D. R.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Ichioka, Y.

Ishida, K.

Kawano, H.

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
[CrossRef]

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, N. Fujiyama, E. Niikura, T. Kunieda, and T. Minobe, “Compact image scanner with large depth of field by compound eye system,” Opt. Express 20(12), 13532–13538 (2012).
[CrossRef] [PubMed]

Kawazu, M.

Kittle, D. S.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Kondou, N.

Kumagai, T.

Kunieda, T.

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
[CrossRef]

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, N. Fujiyama, E. Niikura, T. Kunieda, and T. Minobe, “Compact image scanner with large depth of field by compound eye system,” Opt. Express 20(12), 13532–13538 (2012).
[CrossRef] [PubMed]

Leitel, R.

Makita, J.

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
[CrossRef]

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, N. Fujiyama, E. Niikura, T. Kunieda, and T. Minobe, “Compact image scanner with large depth of field by compound eye system,” Opt. Express 20(12), 13532–13538 (2012).
[CrossRef] [PubMed]

Marks, D. L.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Matsuzawa, T.

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
[CrossRef]

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, N. Fujiyama, E. Niikura, T. Kunieda, and T. Minobe, “Compact image scanner with large depth of field by compound eye system,” Opt. Express 20(12), 13532–13538 (2012).
[CrossRef] [PubMed]

McNaul, J. P.

J. P. McNaul, “Scanners As Image Input Devices,” Proc. of Industrial Applications of Solid State Image Scanners, SPIE 0145, 58–64 (1989).

Minobe, T.

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
[CrossRef]

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, N. Fujiyama, E. Niikura, T. Kunieda, and T. Minobe, “Compact image scanner with large depth of field by compound eye system,” Opt. Express 20(12), 13532–13538 (2012).
[CrossRef] [PubMed]

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Nakajima, H.

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
[CrossRef]

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, N. Fujiyama, E. Niikura, T. Kunieda, and T. Minobe, “Compact image scanner with large depth of field by compound eye system,” Opt. Express 20(12), 13532–13538 (2012).
[CrossRef] [PubMed]

Nakanishi, T.

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
[CrossRef]

Niikura, E.

Noll, R. E.

R. E. Noll and R. A. Tracy, “Application of visible linear array technology to earth observation sensors,” Proc. of Scanners and Imagery Systems for Earth Observation, 0051, 124–131 (1974).
[CrossRef]

Ogura, Y.

Okamoto, T.

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
[CrossRef]

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, N. Fujiyama, E. Niikura, T. Kunieda, and T. Minobe, “Compact image scanner with large depth of field by compound eye system,” Opt. Express 20(12), 13532–13538 (2012).
[CrossRef] [PubMed]

Stack, R. A.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Tanida, J.

Toyoda, Y.

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
[CrossRef]

Tracy, R. A.

R. E. Noll and R. A. Tracy, “Application of visible linear array technology to earth observation sensors,” Proc. of Scanners and Imagery Systems for Earth Observation, 0051, 124–131 (1974).
[CrossRef]

Tünnermann, A.

Vera, E. M.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Yamada, K.

Appl. Opt. (3)

Nature (1)

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Rev. (1)

H. Kawano, T. Okamoto, T. Matsuzawa, H. Nakajima, J. Makita, Y. Toyoda, T. Funakura, T. Nakanishi, T. Kunieda, and T. Minobe, “Compact and large depth of field image scanner for auto document feeder with compound eye system,” Opt. Rev. 20(2), 254–258 (2013).
[CrossRef]

Proc. of Industrial Applications of Solid State Image Scanners, SPIE (1)

J. P. McNaul, “Scanners As Image Input Devices,” Proc. of Industrial Applications of Solid State Image Scanners, SPIE 0145, 58–64 (1989).

Proc. of Scanners and Imagery Systems for Earth Observation, (1)

R. E. Noll and R. A. Tracy, “Application of visible linear array technology to earth observation sensors,” Proc. of Scanners and Imagery Systems for Earth Observation, 0051, 124–131 (1974).
[CrossRef]

Other (3)

J. A. Toque, Y. Sakatoku, and A. Ide-Ektessabi, “Analytical imaging of cultural heritage paintings using digitally archived images,” Proc. of SPIE-IS&T Electronic Imaging, SPIE 7531, 75310N–1-9 (2010).
[CrossRef]

K. Nagatani, K. Morita, H. Okushiba, S. Kojima, and R. Sakaguchi, US patent 5399850 (1995).

I. Maeda, T. Inokuchi, and T. Miyashita, US patent 4776683 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Conceptual structure of our compound eye scanner. Each cylinder in (a) expresses an imaging cell constructed from two lenses and one aperture stop. Imaging cells are telecentric in object space and aligned in a zigzag alignment of two lines of A and B along X direction [11].

Fig. 2
Fig. 2

Various ways to fold ray path for imaging cell. (a,b) Drawing in refractive forms of double-sided telecentric imaging system with same magnification ratio in X or Y directions. (c) Folded path of model (b) by replacing two lenses by two concave mirrors. (d) Previous model [11,12] inserted by two flat mirrors in model (c). (e) Drawing in refractive form of imaging cell with reduced magnification ratio (f1 < f2). (f) Folded path of model (e) by replacing two lenses by two concave mirrors. (g) This study’s form inserted by a flat mirror in model (f).

Fig. 3
Fig. 3

Optical design layout. (a) Perspective view of four imaging cells. (b) Cross-sectional view. The height of 31 mm includes the illumination unit and the base plate. Total width is 50 mm.

Fig. 4
Fig. 4

Simulation result of optical characteristics. (a) MTF vs object height in X. Spatial frequencies in legend are translated values in object space. 12 lp/mm corresponds to Nyquist spatial frequency of 600 dpi. (b) Distortion in Y vs object height in X. Distortion is expressed in position translated in object space. (c) MTF vs defocus amount in object space. Spatial frequency of MTF is 6 lp/mm in object space. Legends are object heights h in X and Y directions.

Fig. 5
Fig. 5

Assembly process. (a) Concave mirrors glued on base plate. (b) Partially dissembled module. Holders and image sensor substrate of lower side are removed. (c) Side view of finished prototype.

Fig. 6
Fig. 6

Experimental setup.

Fig. 7
Fig. 7

Image of sterically-bulky object of accessories on a piece of rough cloth. Picture width is 130 mm.

Fig. 8
Fig. 8

Image of five test charts pasted on a step-like object. Arial is a registered trademark of The Monotype Corporation. (a) Cross section of test chart of step-like object. (b) Image. Depths are 4.0 mm to 0 from left to right.

Fig. 9
Fig. 9

Contrast at defocused position. Chart pattern is ronchi-ruling of 7.1 lp/mm spatial frequency (358 dpi).

Fig. 10
Fig. 10

Variability of image rotation error by each optical cell.

Tables (1)

Tables Icon

Table 1 Comparison between previous model and this study’s model

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

a= l f 1 l f 1 + f 2 ,
a= 1 2 ( f 1 + f 1 2 f 2 ).
f 2 < 1 2 f 1 ,
c= I max I min I max + I min ,

Metrics