Abstract

The diffraction efficiency of a hologram displayed on a phase-only spatial light modulator (SLM) is maximal, if the SLM modulates the phase of the diffracted beam in a range between 0 and 2π. However, if the readout wavelength changes, or a broadband beam is used, due to dispersion this ideal modulation range cannot be maintained, which leads to lower diffraction efficiency and to the appearance of an undesired intense zero diffraction order. Here we show how an SLM with an extended phase modulation range of 4π can be used to display on-axis holograms with a strong suppression of the zero diffraction order in a wide spectral range, extending over 200 nm. The basic idea is to transform the original on-axis hologram into an off-axis hologram by adding a blazed grating and performing a modulo 2π operation, and then transforming it back by adding the conjugate grating, but without performing a subsequent modulo operation. The final hologram then spans over a phase range of 4π. The total diffracted field corresponds to that of the original on-axis hologram, but now the zero-order Fourier component is diffracted away from the optical axis. The same principle can be used to entangle the on-axis hologram with other phase structures, e.g. a random phase mask or a second hologram structure, followed by a subsequent addition of the conjugate mask, which may also suppress higher diffraction orders. The reconstructed holograms show a strong contrast enhancement in a broad wavelength range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Buckley, “70.2: Invited paper: holographic laser projection technology,” in SID Symposium Digest of Technical Papers, Society for Information Display (2008), Vol. 39, pp. 1074–1079.
    [CrossRef]
  2. M. Makowski, I. Ducin, M. Sypek, A. Siemion, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Color image projection based on Fourier holograms,” Opt. Lett. 35, 1227–1229 (2010).
    [CrossRef] [PubMed]
  3. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997).
    [CrossRef] [PubMed]
  4. C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17, 10774–10781 (2009).
    [CrossRef] [PubMed]
  5. P. J. Smith, C. M. Taylor, A. J. Shaw, and E. M. McCabe, “Programmable array microscopy with a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 39, 2664–2669 (2000).
    [CrossRef]
  6. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
    [CrossRef]
  7. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scan-less two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
    [CrossRef]
  8. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
    [CrossRef]
  9. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [CrossRef]
  10. H. Gross, Handbook of Optical Systems(Wiley, 2005).
    [CrossRef]
  11. V. Kettunen, K. Jefimovs, J. Simonen, O. Ripoll, M. Kuittinen, and H. P. Herzig, “Diffractive elements designed to suppress unwanted zeroth order due to surface depth error,” J. Mod. Opt. 51, 2111–2123 (2004).
    [CrossRef]
  12. N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
    [CrossRef] [PubMed]
  13. J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl Opt. 51, 3294–3304 (2012).
    [CrossRef] [PubMed]
  14. B. Kress and P. Meyrueis, Digital Diffractive Optics(Wiley, 2000).
  15. A. Martínez-García, J. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Time-multiplexed chromatic-controlled axial diffractive optical elements,” Opt. Eng. 49,078201 (2010).
    [CrossRef]
  16. U. D. Zeitner and P. Dannberg, “On-axis diffractive elements with improved signal quality in the presence of fabrication errors and wavelength tolerances,” J. Mod. Opt. 52, 2051–2057 (2005).
    [CrossRef]
  17. S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics (Pergamon, 2007), Vol. 146.
    [CrossRef]
  18. R. Steiger, S. Bernet, and M. Ritsch-Marte, “SLM-based off-axis Fourier filtering in microscopy with white light illumination,” Opt. Express 20, 15377–15384 (2012).
    [CrossRef] [PubMed]
  19. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: A new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
    [CrossRef]
  20. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  21. J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Laser Eng. 51, 111–115 (2013).
    [CrossRef]
  22. V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, “Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38, 4663–4666 (2013).
    [CrossRef] [PubMed]

2013 (2)

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Laser Eng. 51, 111–115 (2013).
[CrossRef]

V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, “Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38, 4663–4666 (2013).
[CrossRef] [PubMed]

2012 (2)

J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl Opt. 51, 3294–3304 (2012).
[CrossRef] [PubMed]

R. Steiger, S. Bernet, and M. Ritsch-Marte, “SLM-based off-axis Fourier filtering in microscopy with white light illumination,” Opt. Express 20, 15377–15384 (2012).
[CrossRef] [PubMed]

2011 (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[CrossRef]

2010 (3)

2009 (1)

2008 (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scan-less two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[CrossRef]

2005 (1)

U. D. Zeitner and P. Dannberg, “On-axis diffractive elements with improved signal quality in the presence of fabrication errors and wavelength tolerances,” J. Mod. Opt. 52, 2051–2057 (2005).
[CrossRef]

2004 (1)

V. Kettunen, K. Jefimovs, J. Simonen, O. Ripoll, M. Kuittinen, and H. P. Herzig, “Diffractive elements designed to suppress unwanted zeroth order due to surface depth error,” J. Mod. Opt. 51, 2111–2123 (2004).
[CrossRef]

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

2000 (1)

1999 (1)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

1997 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

1969 (1)

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: A new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Albero, J.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Laser Eng. 51, 111–115 (2013).
[CrossRef]

V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, “Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38, 4663–4666 (2013).
[CrossRef] [PubMed]

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scan-less two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[CrossRef]

Arfire, C.

Becker, M. F.

J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl Opt. 51, 3294–3304 (2012).
[CrossRef] [PubMed]

Bergoënd, I.

Bernet, S.

R. Steiger, S. Bernet, and M. Ritsch-Marte, “SLM-based off-axis Fourier filtering in microscopy with white light illumination,” Opt. Express 20, 15377–15384 (2012).
[CrossRef] [PubMed]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[CrossRef]

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics (Pergamon, 2007), Vol. 146.
[CrossRef]

Buckley, E.

E. Buckley, “70.2: Invited paper: holographic laser projection technology,” in SID Symposium Digest of Technical Papers, Society for Information Display (2008), Vol. 39, pp. 1074–1079.
[CrossRef]

Calero, V.

Cao, Z.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Dannberg, P.

U. D. Zeitner and P. Dannberg, “On-axis diffractive elements with improved signal quality in the presence of fabrication errors and wavelength tolerances,” J. Mod. Opt. 52, 2051–2057 (2005).
[CrossRef]

del Mar Sánchez-López, M.

A. Martínez-García, J. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Time-multiplexed chromatic-controlled axial diffractive optical elements,” Opt. Eng. 49,078201 (2010).
[CrossRef]

Depeursinge, C.

Ducin, I.

Fatemi, F. K.

J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl Opt. 51, 3294–3304 (2012).
[CrossRef] [PubMed]

Fürhapter, S.

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics (Pergamon, 2007), Vol. 146.
[CrossRef]

García-Martínez, P.

V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, “Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38, 4663–4666 (2013).
[CrossRef] [PubMed]

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Laser Eng. 51, 111–115 (2013).
[CrossRef]

A. Martínez-García, J. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Time-multiplexed chromatic-controlled axial diffractive optical elements,” Opt. Eng. 49,078201 (2010).
[CrossRef]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Gross, H.

H. Gross, Handbook of Optical Systems(Wiley, 2005).
[CrossRef]

Hayasaki, Y.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Herzig, H. P.

V. Kettunen, K. Jefimovs, J. Simonen, O. Ripoll, M. Kuittinen, and H. P. Herzig, “Diffractive elements designed to suppress unwanted zeroth order due to surface depth error,” J. Mod. Opt. 51, 2111–2123 (2004).
[CrossRef]

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: A new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Itoh, M.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Jefimovs, K.

V. Kettunen, K. Jefimovs, J. Simonen, O. Ripoll, M. Kuittinen, and H. P. Herzig, “Diffractive elements designed to suppress unwanted zeroth order due to surface depth error,” J. Mod. Opt. 51, 2111–2123 (2004).
[CrossRef]

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[CrossRef]

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics (Pergamon, 2007), Vol. 146.
[CrossRef]

Jiang, B.

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: A new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Kettunen, V.

V. Kettunen, K. Jefimovs, J. Simonen, O. Ripoll, M. Kuittinen, and H. P. Herzig, “Diffractive elements designed to suppress unwanted zeroth order due to surface depth error,” J. Mod. Opt. 51, 2111–2123 (2004).
[CrossRef]

Kolodziejczyk, A.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Kress, B.

B. Kress and P. Meyrueis, Digital Diffractive Optics(Wiley, 2000).

Kuittinen, M.

V. Kettunen, K. Jefimovs, J. Simonen, O. Ripoll, M. Kuittinen, and H. P. Herzig, “Diffractive elements designed to suppress unwanted zeroth order due to surface depth error,” J. Mod. Opt. 51, 2111–2123 (2004).
[CrossRef]

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: A new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Li, C.

Liang, J.

J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl Opt. 51, 3294–3304 (2012).
[CrossRef] [PubMed]

Love, G. D.

Makowski, M.

Martínez, J.

A. Martínez-García, J. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Time-multiplexed chromatic-controlled axial diffractive optical elements,” Opt. Eng. 49,078201 (2010).
[CrossRef]

Martínez, J. L.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Laser Eng. 51, 111–115 (2013).
[CrossRef]

Martínez-García, A.

A. Martínez-García, J. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Time-multiplexed chromatic-controlled axial diffractive optical elements,” Opt. Eng. 49,078201 (2010).
[CrossRef]

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[CrossRef]

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics (Pergamon, 2007), Vol. 146.
[CrossRef]

McCabe, E. M.

Meyrueis, P.

B. Kress and P. Meyrueis, Digital Diffractive Optics(Wiley, 2000).

Moreno, I.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Laser Eng. 51, 111–115 (2013).
[CrossRef]

V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, “Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38, 4663–4666 (2013).
[CrossRef] [PubMed]

A. Martínez-García, J. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Time-multiplexed chromatic-controlled axial diffractive optical elements,” Opt. Eng. 49,078201 (2010).
[CrossRef]

Mu, Q.

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scan-less two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[CrossRef]

Nishida, N.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Pavillon, N.

Peterka, D. S.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scan-less two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[CrossRef]

Ripoll, O.

V. Kettunen, K. Jefimovs, J. Simonen, O. Ripoll, M. Kuittinen, and H. P. Herzig, “Diffractive elements designed to suppress unwanted zeroth order due to surface depth error,” J. Mod. Opt. 51, 2111–2123 (2004).
[CrossRef]

Ritsch-Marte, M.

R. Steiger, S. Bernet, and M. Ritsch-Marte, “SLM-based off-axis Fourier filtering in microscopy with white light illumination,” Opt. Express 20, 15377–15384 (2012).
[CrossRef] [PubMed]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[CrossRef]

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics (Pergamon, 2007), Vol. 146.
[CrossRef]

Sánchez-López, M. M.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Shaw, A. J.

Siemion, A.

Simonen, J.

V. Kettunen, K. Jefimovs, J. Simonen, O. Ripoll, M. Kuittinen, and H. P. Herzig, “Diffractive elements designed to suppress unwanted zeroth order due to surface depth error,” J. Mod. Opt. 51, 2111–2123 (2004).
[CrossRef]

Smith, P. J.

Steiger, R.

Suszek, J.

Sypek, M.

Taylor, C. M.

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scan-less two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[CrossRef]

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scan-less two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[CrossRef]

Wu, S. Y.

J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl Opt. 51, 3294–3304 (2012).
[CrossRef] [PubMed]

Xia, M.

Xuan, L.

Yatagai, T.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Yuste, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scan-less two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[CrossRef]

Zeitner, U. D.

U. D. Zeitner and P. Dannberg, “On-axis diffractive elements with improved signal quality in the presence of fabrication errors and wavelength tolerances,” J. Mod. Opt. 52, 2051–2057 (2005).
[CrossRef]

Appl Opt. (1)

J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl Opt. 51, 3294–3304 (2012).
[CrossRef] [PubMed]

Appl. Opt. (2)

Front. Neural Circuits (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scan-less two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[CrossRef]

IBM J. Res. Dev. (1)

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: A new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

J. Mod. Opt. (2)

U. D. Zeitner and P. Dannberg, “On-axis diffractive elements with improved signal quality in the presence of fabrication errors and wavelength tolerances,” J. Mod. Opt. 52, 2051–2057 (2005).
[CrossRef]

V. Kettunen, K. Jefimovs, J. Simonen, O. Ripoll, M. Kuittinen, and H. P. Herzig, “Diffractive elements designed to suppress unwanted zeroth order due to surface depth error,” J. Mod. Opt. 51, 2111–2123 (2004).
[CrossRef]

Laser Photon. Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[CrossRef]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Opt. Eng. (1)

A. Martínez-García, J. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Time-multiplexed chromatic-controlled axial diffractive optical elements,” Opt. Eng. 49,078201 (2010).
[CrossRef]

Opt. Express (3)

Opt. Laser Eng. (1)

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Laser Eng. 51, 111–115 (2013).
[CrossRef]

Opt. Lett. (2)

Opt. Rev. (1)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Other (4)

E. Buckley, “70.2: Invited paper: holographic laser projection technology,” in SID Symposium Digest of Technical Papers, Society for Information Display (2008), Vol. 39, pp. 1074–1079.
[CrossRef]

H. Gross, Handbook of Optical Systems(Wiley, 2005).
[CrossRef]

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics (Pergamon, 2007), Vol. 146.
[CrossRef]

B. Kress and P. Meyrueis, Digital Diffractive Optics(Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Standard setup for the reconstruction of a Fourier DOE. Light from a monochromator passes through a multimode fiber and is collimated by an objective (Obj.) and an achromatic lens L1 (f=200 mm). The light passes through a linear polariser (Pol1) to the surface of a reflective, phase-only SLM. The light diffracted off the SLM passes through a second linear polariser (Pol2) and is focused with lens L2 (f=200 mm) at a CMOS camera.

Fig. 2
Fig. 2

A: Intensity image to be reconstructed by the DOEs displayed on the SLM. B: On-axis phase-only DOE calculated with a GS algorithm which reconstructs image (A) in its Fourier plane. The gray levels in the picture correspond to phase values in the DOE (the colorbar displays the phase values in radians). C: DOE with zero-order suppression calculated according to the ”grating method” (Eq. (5)). D: DOE calculated according to the ”double DOE method” (Eq. (6)). Note that the phases of the DOEs displayed in (C) and (D) range from 0 to 4π. All DOEs consist of a 600 x 600 pixel array.

Fig. 3
Fig. 3

Reconstructed images of a standard DOE D0 (upper row), a DOE optimized with the ”grating method” Dg (middle row), and a DOE optimized with the ”double DOE method” Dd (bottom row) at different readout wavelengths, quoted at the top. The focused spot of the zero order beam is indicated in each image by an arrow. All images are normalized to the peak intensity of the indicated zero order spot.

Fig. 4
Fig. 4

Numerical simulation (left) and experimental results (right) of the first order (upper curves) and zero-order (lower curves) efficiencies of three DOE types, namely a standard DOE (in a phase range of 2π, green), a DOE calculated according to the grating method (Eq. (5), blue) and a DOE calculated according to the ”double DOE method” (Eq. (6), red). The first order efficiencies (upper curves) of the 4π-DOEs are slightly lower than those of the standard DOE, but the corresponding zero order efficiencies (lower curves) are significantly suppressed for both the ”grating method” and the ”double DOE method”, resulting in a strong contrast improvement. The numerical simulations at the left were performed using the look-up tables of the employed SLM, which are provided by the producer.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η m ( Φ max ) = sinc 2 [ π ( m Φ max 2 π ) ] .
V 0 = η 1 η 0 ,
V g = η 11 η 00 = η 1 2 η 0 2 = V 0 2 ,
η d = η 1 2 + η 0 η 1 .
D g = mod 2 π [ D 0 + G ] + ( 2 π G ) .
D d = mod 2 π [ D 0 + ( 2 π D 1 ) ] + D 1 .

Metrics