Abstract

Numerical and experimental results on stimulated Brillouin scattering (SBS) in a graded-index multimode silica fiber are reported. The Brillouin Gain Spectrum (BGS) is shown to strongly depend on the pump and probe modal content. By use of a numerical model, the BGS at varying launching conditions of both pump and probe beams is computed. Numerical results show that intramodal and intermodal SBS contribute to the overall BGS. Experiments confirm the numerical predictions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [CrossRef]
  2. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
    [CrossRef]
  3. A. H. McCurdy, “Modeling of stimulated Brillouin scattering in optical fibers with arbitrary radial index profile,” J. Lightwave Technol. 23(11), 3509–3516 (2005).
    [CrossRef]
  4. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005).
    [CrossRef] [PubMed]
  5. W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 901610 (2014)
  6. B. Ward and M. Mermelstein, “Modeling of inter-modal Brillouin gain in higher-order-mode fibers,” Opt. Express 18(3), 1952–1958 (2010).
    [CrossRef] [PubMed]
  7. A. Li, Q. Hu, and W. Shieh, “Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis,” Opt. Express 21(26), 31894–31906 (2013).
    [CrossRef] [PubMed]
  8. K. Y. Song and Y. H. Kim, “Characterization of stimulated Brillouin scattering in a few-mode fiber,” Opt. Lett. 38(22), 4841–4844 (2013).
    [CrossRef] [PubMed]
  9. K. Y. Song, Y. H. Kim, and B. Y. Kim, “Intermodal stimulated Brillouin scattering in two-mode fibers,” Opt. Lett. 38(11), 1805–1807 (2013).
    [CrossRef] [PubMed]
  10. A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, and A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE 5581, 654–661 (2004).
    [CrossRef]
  11. A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, A. Gavrielides, P. R. Peterson, and M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13(6), 2019–2024 (2005).
    [CrossRef] [PubMed]
  12. A. Fotiadi and E. A. Kuzin, “Stimulated Brillouin scattering associated with hypersound diffraction in multimode optical fibers,” presented at Quantum Electronics and Laser Science Conference, Anaheim, Calif, June 2–7 1006, paper QFC4.
  13. G. A. Decker, “Method of fabricating an optical attenuator by fusion splicing of optical fibers, US Patent no. 4557556, 1985.
  14. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
    [CrossRef]

2014 (1)

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 901610 (2014)

2013 (3)

2010 (1)

2005 (3)

2004 (2)

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, and A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE 5581, 654–661 (2004).
[CrossRef]

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
[CrossRef]

1997 (1)

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[CrossRef]

Bickham, S. R.

Chowdhury, D. Q.

Chujo, W.

Gavrielides, A.

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, A. Gavrielides, P. R. Peterson, and M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13(6), 2019–2024 (2005).
[CrossRef] [PubMed]

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, and A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE 5581, 654–661 (2004).
[CrossRef]

Hu, Q.

Jain, R.

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, A. Gavrielides, P. R. Peterson, and M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13(6), 2019–2024 (2005).
[CrossRef] [PubMed]

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, and A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE 5581, 654–661 (2004).
[CrossRef]

Ke, W. W.

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 901610 (2014)

Kim, B. Y.

Kim, Y. H.

Kobyakov, A.

Koyamada, Y.

Kumar, S.

Li, A.

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[CrossRef]

McCurdy, A. H.

Mermelstein, M.

Mishra, R.

Mocofanescu, A.

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, A. Gavrielides, P. R. Peterson, and M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13(6), 2019–2024 (2005).
[CrossRef] [PubMed]

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, and A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE 5581, 654–661 (2004).
[CrossRef]

Nakamura, S.

Nikles, M.

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Peterson, P. R.

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, A. Gavrielides, P. R. Peterson, and M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13(6), 2019–2024 (2005).
[CrossRef] [PubMed]

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, and A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE 5581, 654–661 (2004).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Ruffin, A. B.

Sato, S.

Sauer, M.

Sharma, M.

Shaw, K. D.

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, A. Gavrielides, P. R. Peterson, and M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13(6), 2019–2024 (2005).
[CrossRef] [PubMed]

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, and A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE 5581, 654–661 (2004).
[CrossRef]

Shieh, W.

Song, K. Y.

Sotobayashi, H.

Tang, X.

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 901610 (2014)

Thévenaz, L.

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Wang, L.

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, A. Gavrielides, P. R. Peterson, and M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13(6), 2019–2024 (2005).
[CrossRef] [PubMed]

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, and A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE 5581, 654–661 (2004).
[CrossRef]

Wang, X. J.

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 901610 (2014)

Ward, B.

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 901610 (2014)

J. Lightwave Technol. (3)

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (1)

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, and A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE 5581, 654–661 (2004).
[CrossRef]

Other (2)

A. Fotiadi and E. A. Kuzin, “Stimulated Brillouin scattering associated with hypersound diffraction in multimode optical fibers,” presented at Quantum Electronics and Laser Science Conference, Anaheim, Calif, June 2–7 1006, paper QFC4.

G. A. Decker, “Method of fabricating an optical attenuator by fusion splicing of optical fibers, US Patent no. 4557556, 1985.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Brillouin gain coefficients (a) and Brillouin gain spectrum (b) computed for the LP01-LP01 optical mode pair.

Fig. 2
Fig. 2

Brillouin gain coefficients (a) and Brillouin gain spectrum (b) computed for the LP01-LP11 optical mode pair.

Fig. 3
Fig. 3

Brillouin gain coefficients (a) and Brillouin gain spectrum (b) computed for the LP11-LP11 optical mode pair.

Fig. 4
Fig. 4

Experimental setup for BOFDA measurements. DFB-LD, diode laser; FBG, fiber Bragg grating; EDFA, Er-doped fiber amplifier. EOM, electro-optic modulator; LIA, lock-in amplifier; PD: photodetector.

Fig. 5
Fig. 5

(a) Coupling coefficients between SMF and GI-MMF computed in case of zero offset between the two fibers; (b) Numerical and experimental BGS of the GI-MMF in case of zero offset between the two fibers.

Fig. 6
Fig. 6

(a) Coupling coefficients computed between SMF and GI-MMF in case of 8.5 μm lateral offset between the two fibers (only GI-MMF modes with a coupling coefficient larger than 0.01 were included in the graph); (b) Numerical and experimental BGS of the GI-MMF in case of 8.5 μm lateral offset between the two fibers.

Fig. 7
Fig. 7

Coupling coefficients computed between SMF and GI-MMF in case of 15 μm lateral offset between the two fibers. Only GI-MMF modes with a coupling coefficient larger than 0.01 were included in the graph.

Fig. 8
Fig. 8

Numerical and experimental BGS of the GI-MMF in case of 15 μm lateral offset between the two fibers.

Fig. 9
Fig. 9

Brillouin gain coefficient associated to each acoustic mode of the GI-MMF, when the latter is excited at both ends by an SMF spliced with a 15 μm offset.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

V l ( r,θ )= V l0 ( 17.8 Δn( r,θ ) / n cl )
BF S i,j,k =BF S i,1,1 ( n eff,j + n eff,k ) / ( 2 n eff,1 )
G i,j,k = g i,j,k [ f i * ( r,θ ) g j * ( r,θ ) h k ( r,θ )drdθ ] 2
BG S j,k ( υ )= i=1 N ac G i,j,k 1 1+ ( υBF S i,j,k Δ υ B /2 ) 2
E p ( r,θ )= j=1 N A j f j ( r,θ )
E s ( r,θ )= k=1 N B k f k ( r,θ )
BGS ¯ ( ν )= j=1 N B j k=1 N A k ×BG S j,k ( υ )
BGS ¯ ( ν )= j=1 N C j k=1 N C k ×BG S j,k ( υ )
BG S observed ( υ )= j=1 N C j 2 k=1 N C k ×BG S j,k ( υ ) = j=1 N k=1 N BG S j,k eff ( υ )
BF S j,k eff ( υ )= C j 2 C k i=1 N ac G i,j,k 1 1+ ( υBF S i,j,k Δ υ B /2 ) 2
T = exp [ ( d ω ) 2 ]

Metrics