Abstract

We investigate the twofold functionality of a cylindrical shell consisting of a negatively refracting heterogeneous bianisotropic (NRHB) medium deduced from geometric transforms. The numerical simulations indicate that the shell enhances their scattering by a perfect electric conducting (PEC) core, whereas it considerably reduces the scattering of electromagnetic waves by closely located objects when the shell surrounds a bianisotropic core. The former can be attributed to a homeopathic effect, whereby a small PEC object scatters like a large one as confirmed by numerics, while the latter can be attributed to space cancellation of complementary bianisotropic media underpinning anomalous resonances counteracting the field emitted by small objects (external cloaking). Space cancellation is further used to cloak a NRHB finite size object located nearby a slab of NRHB with a hole of same shape and opposite refracting index. Such a finite frequency external cloaking is also achieved with a NRHB cylindrical lens. Finally, we investigate an ostrich effect whereby the scattering of NRHB slabs and cylindrical lenses with simplified parameters hide the presence of small electric antennas in the quasi-static limit.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [CrossRef] [PubMed]
  2. J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  3. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
    [CrossRef]
  4. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Materials 9, 387–396 (2010).
    [CrossRef] [PubMed]
  5. M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding : focussing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
    [CrossRef] [PubMed]
  6. G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. A 461, 3999–4034 (2005).
    [CrossRef]
  7. G. W. Milton and N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462, 3027–3059 (2006).
    [CrossRef]
  8. G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” New J. Phys. 10, 115021 (2008).
    [CrossRef]
  9. J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys.: Condens. Matter 15, 6345–6364 (2003).
  10. T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: Enhancement of scattering with complementary media,” Opt. Express 16, 18545 (2008).
    [CrossRef] [PubMed]
  11. X. X. Cheng, H. S. Shen, B.-I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
    [CrossRef]
  12. Y. Shen, K. Ding, W. Sun, and L. Zhou, “A chirality switching device designed with transofrmation optics,” Opt. Express. 18, 21419–21426 (2010).
    [CrossRef] [PubMed]
  13. F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: A reciprocal field transformation approach,” Phys. Rev. Lett. 111, 033901 (2013).
    [CrossRef] [PubMed]
  14. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49, 8479–8482 (1994).
    [CrossRef]
  15. N. A. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10, 115020 (2008).
    [CrossRef]
  16. A. V. Novitsky, S. V. Zhukovsky, L. M. Barkovsky, and A. V. Lavrinenko, “Field approach in the transformation optics concept,” PIER 129, 485–515 (2012).
    [CrossRef]
  17. Y. Liu, S. Guenneau, B. Gralak, and S. A. Ramakrishna, “Focussing light in a bianisotropic slab with negatively refracting materials,” J. Phys.: Condens. Matter 25, 135901 (2013).
  18. A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996).
    [CrossRef]
  19. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and mirage effect,” Opt. Lett. 32, 1069–1071 (2007).
    [CrossRef] [PubMed]
  20. S. Guenneau, B. Gralak, and J. B. Pendry, “Perfect corner reflector,” Opt. Lett. 30, 1204–1206 (2005).
    [CrossRef] [PubMed]
  21. M. S. Kluskens and E. H. Newman, “Scattering by a multilayer chiral cylinder,” IEEE Trans. Antennas. Propag. 39, 91–96 (1991).
    [CrossRef]
  22. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. sp. 10, 509–514 (1968).
    [CrossRef]
  23. O. P. Bruno and S. Lintner, “Superlens-cloaking of small dielectric bodies in the quasistatic regime,” J. Appl. Phys. 102, 124502 (2007).
    [CrossRef]
  24. J. B. Pendry and D. R. Smith, “Reversing light: negative refraction,” Physics Today (2003).
  25. H. Jin and S. L. He, “Focusing by a slab of chiral medium,” Opt. Express 13, 4974–4979 (2005).
    [CrossRef] [PubMed]
  26. Y. Liu, S. Guenneau, and B. Gralak, “Artificial dispersion via high-order homogenization: Magnetoelectric coupling and magnetism from dielectric layers,” Proc. R. Soc. A 469, 20130240 (2013).
    [CrossRef] [PubMed]

2013 (3)

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: A reciprocal field transformation approach,” Phys. Rev. Lett. 111, 033901 (2013).
[CrossRef] [PubMed]

Y. Liu, S. Guenneau, B. Gralak, and S. A. Ramakrishna, “Focussing light in a bianisotropic slab with negatively refracting materials,” J. Phys.: Condens. Matter 25, 135901 (2013).

Y. Liu, S. Guenneau, and B. Gralak, “Artificial dispersion via high-order homogenization: Magnetoelectric coupling and magnetism from dielectric layers,” Proc. R. Soc. A 469, 20130240 (2013).
[CrossRef] [PubMed]

2012 (1)

A. V. Novitsky, S. V. Zhukovsky, L. M. Barkovsky, and A. V. Lavrinenko, “Field approach in the transformation optics concept,” PIER 129, 485–515 (2012).
[CrossRef]

2011 (1)

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding : focussing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[CrossRef] [PubMed]

2010 (2)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Materials 9, 387–396 (2010).
[CrossRef] [PubMed]

Y. Shen, K. Ding, W. Sun, and L. Zhou, “A chirality switching device designed with transofrmation optics,” Opt. Express. 18, 21419–21426 (2010).
[CrossRef] [PubMed]

2009 (1)

X. X. Cheng, H. S. Shen, B.-I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
[CrossRef]

2008 (3)

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” New J. Phys. 10, 115021 (2008).
[CrossRef]

N. A. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10, 115020 (2008).
[CrossRef]

T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: Enhancement of scattering with complementary media,” Opt. Express 16, 18545 (2008).
[CrossRef] [PubMed]

2007 (2)

O. P. Bruno and S. Lintner, “Superlens-cloaking of small dielectric bodies in the quasistatic regime,” J. Appl. Phys. 102, 124502 (2007).
[CrossRef]

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and mirage effect,” Opt. Lett. 32, 1069–1071 (2007).
[CrossRef] [PubMed]

2006 (4)

G. W. Milton and N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462, 3027–3059 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
[CrossRef]

2005 (3)

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. A 461, 3999–4034 (2005).
[CrossRef]

S. Guenneau, B. Gralak, and J. B. Pendry, “Perfect corner reflector,” Opt. Lett. 30, 1204–1206 (2005).
[CrossRef] [PubMed]

H. Jin and S. L. He, “Focusing by a slab of chiral medium,” Opt. Express 13, 4974–4979 (2005).
[CrossRef] [PubMed]

2003 (1)

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys.: Condens. Matter 15, 6345–6364 (2003).

1996 (1)

A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996).
[CrossRef]

1994 (1)

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49, 8479–8482 (1994).
[CrossRef]

1991 (1)

M. S. Kluskens and E. H. Newman, “Scattering by a multilayer chiral cylinder,” IEEE Trans. Antennas. Propag. 39, 91–96 (1991).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. sp. 10, 509–514 (1968).
[CrossRef]

Barkovsky, L. M.

A. V. Novitsky, S. V. Zhukovsky, L. M. Barkovsky, and A. V. Lavrinenko, “Field approach in the transformation optics concept,” PIER 129, 485–515 (2012).
[CrossRef]

Bruno, O. P.

O. P. Bruno and S. Lintner, “Superlens-cloaking of small dielectric bodies in the quasistatic regime,” J. Appl. Phys. 102, 124502 (2007).
[CrossRef]

Chan, C. T.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Materials 9, 387–396 (2010).
[CrossRef] [PubMed]

Chen, H.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Materials 9, 387–396 (2010).
[CrossRef] [PubMed]

T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: Enhancement of scattering with complementary media,” Opt. Express 16, 18545 (2008).
[CrossRef] [PubMed]

Cheng, X. X.

X. X. Cheng, H. S. Shen, B.-I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
[CrossRef]

Cherednichenko, K.

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” New J. Phys. 10, 115021 (2008).
[CrossRef]

Ding, K.

Y. Shen, K. Ding, W. Sun, and L. Zhou, “A chirality switching device designed with transofrmation optics,” Opt. Express. 18, 21419–21426 (2010).
[CrossRef] [PubMed]

Enoch, S.

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding : focussing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[CrossRef] [PubMed]

N. A. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10, 115020 (2008).
[CrossRef]

Gralak, B.

Y. Liu, S. Guenneau, B. Gralak, and S. A. Ramakrishna, “Focussing light in a bianisotropic slab with negatively refracting materials,” J. Phys.: Condens. Matter 25, 135901 (2013).

Y. Liu, S. Guenneau, and B. Gralak, “Artificial dispersion via high-order homogenization: Magnetoelectric coupling and magnetism from dielectric layers,” Proc. R. Soc. A 469, 20130240 (2013).
[CrossRef] [PubMed]

S. Guenneau, B. Gralak, and J. B. Pendry, “Perfect corner reflector,” Opt. Lett. 30, 1204–1206 (2005).
[CrossRef] [PubMed]

Guenneau, S.

Y. Liu, S. Guenneau, and B. Gralak, “Artificial dispersion via high-order homogenization: Magnetoelectric coupling and magnetism from dielectric layers,” Proc. R. Soc. A 469, 20130240 (2013).
[CrossRef] [PubMed]

Y. Liu, S. Guenneau, B. Gralak, and S. A. Ramakrishna, “Focussing light in a bianisotropic slab with negatively refracting materials,” J. Phys.: Condens. Matter 25, 135901 (2013).

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding : focussing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[CrossRef] [PubMed]

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and mirage effect,” Opt. Lett. 32, 1069–1071 (2007).
[CrossRef] [PubMed]

S. Guenneau, B. Gralak, and J. B. Pendry, “Perfect corner reflector,” Opt. Lett. 30, 1204–1206 (2005).
[CrossRef] [PubMed]

He, S. L.

Jacob, Z.

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” New J. Phys. 10, 115021 (2008).
[CrossRef]

Jin, H.

Kadic, M.

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding : focussing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[CrossRef] [PubMed]

Kluskens, M. S.

M. S. Kluskens and E. H. Newman, “Scattering by a multilayer chiral cylinder,” IEEE Trans. Antennas. Propag. 39, 91–96 (1991).
[CrossRef]

Kong, J. A.

X. X. Cheng, H. S. Shen, B.-I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
[CrossRef]

Lavrinenko, A. V.

A. V. Novitsky, S. V. Zhukovsky, L. M. Barkovsky, and A. V. Lavrinenko, “Field approach in the transformation optics concept,” PIER 129, 485–515 (2012).
[CrossRef]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
[CrossRef]

Li, J.

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: A reciprocal field transformation approach,” Phys. Rev. Lett. 111, 033901 (2013).
[CrossRef] [PubMed]

Liang, Z.

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: A reciprocal field transformation approach,” Phys. Rev. Lett. 111, 033901 (2013).
[CrossRef] [PubMed]

Lintner, S.

O. P. Bruno and S. Lintner, “Superlens-cloaking of small dielectric bodies in the quasistatic regime,” J. Appl. Phys. 102, 124502 (2007).
[CrossRef]

Liu, F.

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: A reciprocal field transformation approach,” Phys. Rev. Lett. 111, 033901 (2013).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, S. Guenneau, B. Gralak, and S. A. Ramakrishna, “Focussing light in a bianisotropic slab with negatively refracting materials,” J. Phys.: Condens. Matter 25, 135901 (2013).

Y. Liu, S. Guenneau, and B. Gralak, “Artificial dispersion via high-order homogenization: Magnetoelectric coupling and magnetism from dielectric layers,” Proc. R. Soc. A 469, 20130240 (2013).
[CrossRef] [PubMed]

Luo, X.

Ma, H.

McPhedran, R. C.

N. A. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10, 115020 (2008).
[CrossRef]

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” New J. Phys. 10, 115021 (2008).
[CrossRef]

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. A 461, 3999–4034 (2005).
[CrossRef]

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49, 8479–8482 (1994).
[CrossRef]

Milton, G. W.

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” New J. Phys. 10, 115021 (2008).
[CrossRef]

G. W. Milton and N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462, 3027–3059 (2006).
[CrossRef]

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. A 461, 3999–4034 (2005).
[CrossRef]

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49, 8479–8482 (1994).
[CrossRef]

Newman, E. H.

M. S. Kluskens and E. H. Newman, “Scattering by a multilayer chiral cylinder,” IEEE Trans. Antennas. Propag. 39, 91–96 (1991).
[CrossRef]

Nicolet, A.

Nicorovici, N. A.

N. A. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10, 115020 (2008).
[CrossRef]

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49, 8479–8482 (1994).
[CrossRef]

Nicorovici, N.-A. P.

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” New J. Phys. 10, 115021 (2008).
[CrossRef]

G. W. Milton and N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462, 3027–3059 (2006).
[CrossRef]

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. A 461, 3999–4034 (2005).
[CrossRef]

Novitsky, A. V.

A. V. Novitsky, S. V. Zhukovsky, L. M. Barkovsky, and A. V. Lavrinenko, “Field approach in the transformation optics concept,” PIER 129, 485–515 (2012).
[CrossRef]

Pendry, J. B.

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and mirage effect,” Opt. Lett. 32, 1069–1071 (2007).
[CrossRef] [PubMed]

J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

S. Guenneau, B. Gralak, and J. B. Pendry, “Perfect corner reflector,” Opt. Lett. 30, 1204–1206 (2005).
[CrossRef] [PubMed]

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys.: Condens. Matter 15, 6345–6364 (2003).

A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996).
[CrossRef]

J. B. Pendry and D. R. Smith, “Reversing light: negative refraction,” Physics Today (2003).

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
[CrossRef]

Podolskiy, V. A.

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. A 461, 3999–4034 (2005).
[CrossRef]

Ramakrishna, S. A.

Y. Liu, S. Guenneau, B. Gralak, and S. A. Ramakrishna, “Focussing light in a bianisotropic slab with negatively refracting materials,” J. Phys.: Condens. Matter 25, 135901 (2013).

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding : focussing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[CrossRef] [PubMed]

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys.: Condens. Matter 15, 6345–6364 (2003).

Shen, H. S.

X. X. Cheng, H. S. Shen, B.-I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
[CrossRef]

Shen, Y.

Y. Shen, K. Ding, W. Sun, and L. Zhou, “A chirality switching device designed with transofrmation optics,” Opt. Express. 18, 21419–21426 (2010).
[CrossRef] [PubMed]

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Materials 9, 387–396 (2010).
[CrossRef] [PubMed]

Shurig, D.

J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Smith, D. R.

J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry and D. R. Smith, “Reversing light: negative refraction,” Physics Today (2003).

Sun, W.

Y. Shen, K. Ding, W. Sun, and L. Zhou, “A chirality switching device designed with transofrmation optics,” Opt. Express. 18, 21419–21426 (2010).
[CrossRef] [PubMed]

Tayeb, G.

N. A. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10, 115020 (2008).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. sp. 10, 509–514 (1968).
[CrossRef]

Ward, A. J.

A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996).
[CrossRef]

Wu, B.-I.

X. X. Cheng, H. S. Shen, B.-I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
[CrossRef]

Yang, T.

Zhou, L.

Y. Shen, K. Ding, W. Sun, and L. Zhou, “A chirality switching device designed with transofrmation optics,” Opt. Express. 18, 21419–21426 (2010).
[CrossRef] [PubMed]

Zhukovsky, S. V.

A. V. Novitsky, S. V. Zhukovsky, L. M. Barkovsky, and A. V. Lavrinenko, “Field approach in the transformation optics concept,” PIER 129, 485–515 (2012).
[CrossRef]

Zolla, F.

ACS Nano (1)

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding : focussing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[CrossRef] [PubMed]

IEEE Trans. Antennas. Propag. (1)

M. S. Kluskens and E. H. Newman, “Scattering by a multilayer chiral cylinder,” IEEE Trans. Antennas. Propag. 39, 91–96 (1991).
[CrossRef]

J. Appl. Phys. (1)

O. P. Bruno and S. Lintner, “Superlens-cloaking of small dielectric bodies in the quasistatic regime,” J. Appl. Phys. 102, 124502 (2007).
[CrossRef]

J. Mod. Opt. (1)

A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996).
[CrossRef]

J. Phys.: Condens. Matter (2)

Y. Liu, S. Guenneau, B. Gralak, and S. A. Ramakrishna, “Focussing light in a bianisotropic slab with negatively refracting materials,” J. Phys.: Condens. Matter 25, 135901 (2013).

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys.: Condens. Matter 15, 6345–6364 (2003).

Nature Materials (1)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Materials 9, 387–396 (2010).
[CrossRef] [PubMed]

New J. Phys. (3)

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
[CrossRef]

N. A. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10, 115020 (2008).
[CrossRef]

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” New J. Phys. 10, 115021 (2008).
[CrossRef]

Opt. Express (2)

Opt. Express. (1)

Y. Shen, K. Ding, W. Sun, and L. Zhou, “A chirality switching device designed with transofrmation optics,” Opt. Express. 18, 21419–21426 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49, 8479–8482 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: A reciprocal field transformation approach,” Phys. Rev. Lett. 111, 033901 (2013).
[CrossRef] [PubMed]

PIER (1)

A. V. Novitsky, S. V. Zhukovsky, L. M. Barkovsky, and A. V. Lavrinenko, “Field approach in the transformation optics concept,” PIER 129, 485–515 (2012).
[CrossRef]

Proc. R. Soc. A (3)

G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. A 461, 3999–4034 (2005).
[CrossRef]

G. W. Milton and N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462, 3027–3059 (2006).
[CrossRef]

Y. Liu, S. Guenneau, and B. Gralak, “Artificial dispersion via high-order homogenization: Magnetoelectric coupling and magnetism from dielectric layers,” Proc. R. Soc. A 469, 20130240 (2013).
[CrossRef] [PubMed]

Prog. Electromagn. Res. (1)

X. X. Cheng, H. S. Shen, B.-I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
[CrossRef]

Science (2)

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Sov. Phys. sp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. sp. 10, 509–514 (1968).
[CrossRef]

Other (1)

J. B. Pendry and D. R. Smith, “Reversing light: negative refraction,” Physics Today (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

(a) Schematic diagram of cylindrical lens consisting of a negatively refracting bianisotropic ring (grey color) rc < rrs which optically cancels out the positively refracting ring rs < rr* (white color). (b) Mapping of the three axisymmetric regions of panel (a) into layers in the new coordinate system (r, θ, z). (c) The enlarged region 1 in final Cartesian coordinates via transformation optics (TO).

Fig. 2
Fig. 2

Plots of Re(Ez) under an s-polarized incidence with frequency 8.7GHz: (a) Cylindrical lens made of bianisotropic media with parameters as in (7), rs = 0.04m (shell radius) and a PEC boundary at r = rc = 0.02m; (b) Enlarged PEC boundary at r * = r s 2 / r c = 0.08 m in bianisotropic background; (c) Core with PEC boundary at r = rc in bianisotropic background; (d) Comparison of Re(Ez) on the intercepting line for (a) (solid black curve), (b) (blue crosses) and (c) (dotted black curve).

Fig. 3
Fig. 3

(a) Graph of g(r′) versus radius r′, where parameters in vertical are rc = 0.02m (core radius), rs = 0.04m (shell radius), and r * = r s 2 / r c = 0.08 m , r′c = r*. (b) Curves of parameters vr′, vθ′, vz′ defined in (12) versus r in the three regions, where the function g(r′) is defined in (15). (c) Curves of parameters vx, vy, vz defined in (7) versus r. In the matrix, we have vr′ = vθ′ = vz′ in panel (b), and $vx = vy = vz in panel (c): the solid and dashed lines are overlapped..

Fig. 4
Fig. 4

(a) Schematic diagram of a slab lens (d = 0.1m), and a small electric antenna (radius of 0.002m), which is located at a distance d0 = 0.02m above the slab lens in the cloaking region highlighted by dashed line. The parameters in the upper and lower regions are ε = ε0I, μ = μ0I and ξ = 0.99/c0I, while for the slab they are ε = (−ε0 + )I, μ = −μ0I and ξ = −0.99/c0I, I is the 3 × 3 identity matrix. Plots of Re(Ez) for: (b) A transparent slab lens; (c) An electric antenna lies in a background with ε = ε0I, μ = μ0I and ξ = 0.99/c0I; (d) A small electric antenna located at a distance d0 (in the cloaking region) from the slab. An s-polarized plane wave is assumed to be incident from above, with a frequency of 8.7GHz, and δ = 10−18.

Fig. 5
Fig. 5

(a) Diagram of a bianisotropic cylindrical lens (rc = 0.02m, rs = 0.04m) and a small electric antenna (radius of 0.002m). Plots of Re(Ez) for: (b) A transparent cylindrical lens without the electric antenna, the parameters are ε = ε 0 diag ( 1 , 1 , r s 4 / r c 4 ), μ = μ 0 diag ( 1 , 1 , r s 4 / r c 4 ), ξ = 0.99 / c 0 diag ( 1 , 1 , r s 4 / r c 4 ) in the core, ε = ( ε 0 + i δ ) diag ( 1 , 1 , r s 4 / r 4 ), μ = μ 0 diag ( 1 , 1 , r s 4 / r 4 ), ξ = 0.99 / c 0 diag ( 1 , 1 , r s 4 / r 4 ) in the shell, and ε = ε0I, μ = μ0I, ξ = 0.99/c0I in the background; (c) An antenna located at r = 0.07m which is outside the cloaking region, a significant perturbation of the field can be observed; (d) An antenna located at r = 0.045m which is inside the cloaking region becomes virtually invisible to the incident field. An s-polarized plane wave incidence with frequency 8.7GHz is assumed from above, and δ = 10−14.

Fig. 6
Fig. 6

(a) Diagram of a bianisotropic cylindrical lens as in Fig. 5 and a triangular set of small electric antennas, the radius of each antenna 0.001m, the center-to-center spacing between the upper two antennas is 0.006m and the curves connecting their centers form an isosceles right triangle. Plots of Re(Ez) for: (b) Triangular set of antennas are totally outside the cloaking region of radius r # = r s 3 / r c; (c) The upper two antennas of triangular set are outside while the lower one is inside the cloaking region; (d) All antennas sit inside the disc of radius r#. An s-polarized plane wave incidence with frequency 8.7GHz is assumed from above, all the other parameters for the cylindrical lens are the same as in Fig. 5.

Fig. 7
Fig. 7

(a) Comparison of Re(Ez) on the intercepting line for Figs. 5(b)–5(d) in solid black curve, dotted-dashed blue curve and dashed red curve, respectively. The black crosses is the distribution of electric field in a fully bianisotropic background. (b) Comparison of Re(Ez) on the intercepting line for Figs. 6(b)–6(d) in dotted black curve, dotted-dashed blue curve and dashed red curve, respectively. The solid black one corresponds to the distribution of electric field along the intercepting line for a transparent cylindrical lens without electric antennas.

Fig. 8
Fig. 8

(a) A mirror system made of complementary bianisotropic media, an inclusion with ε = ε0I, μ = μ0I, ξ = 0.99/c0I is placed inside the slab lens with ε = (−ε0 + )I, μ = −μ0I, ξ = −0.99/c0I, while a mirror inclusion with ε = (−ε0 + )I, μ = −μ0I, ξ = −0.99/c0I locates in the media with ε = ε0I, μ = μ0I, ξ = 0.99/c0I; (b) Plot of Re(Ez) for the system wherein only an inclusion with ε = (−ε0 + )I, μ = −μ0I, ξ = −0.99/c0I in the background, an s-polarized plane wave comes from above, the negative inclusion interrupts the propagation of the incident wave; (c) Plot of Re(Ez) for the system (a): waves propagate from top to bottom undisturbed. Absorption is δ = 10−17 and the frequency is 1GHz, the thickness of slab lens is d = 0.1m, and the radius of the inclusion is r0 = 0.025m.

Fig. 9
Fig. 9

(a) An annulus with ε = ε 0 diag ( 1 , 1 , r s 4 / r 4 ), μ = μ 0 diag ( 1 , 1 , r s 4 / r 4 ), ξ = 0.99 / c 0 diag ( 1 , 1 , r s 4 / r 4 ) and of radii 0.025m–0.032m is placed inside the shell of a cylindrical lens as shown in Figs. 56, while a mirror inclusion with ε = (−ε0 + )I, μ = −μ0I, ξ = −0.99/c0I and of radii 0.05m–0.064m is placed in the background; (b) Plot of Re(Ez) for the optical system with only an inclusion with ε = (−ε0 + )I, μ = −μ0I, ξ = −0.99/c0I in the background; (c) Plot of Re(Ez) for the optical system (a): waves propagate from top to bottom undisturbed. An s-polarized plane wave comes from above, absorption is δ = 10−14 and the frequency is 8.7GHz.

Fig. 10
Fig. 10

(a) A curved sheet with ε = ε 0 diag ( 1 , 1 , r s 4 / r 4 ), μ = μ 0 diag ( 1 , 1 , r s 4 / r 4 ), ξ = 0.99 / c 0 diag ( 1 , 1 , r s 4 / r 4 ) and of radii 0.025m–0.032m is placed inside the shell with ε = ( ε 0 + i δ ) diag ( 1 , 1 , r s 4 / r 4 ), μ = μ 0 diag ( 1 , 1 , r s 4 / r 4 ), ξ = 0.99 / c 0 diag ( 1 , 1 , r s 4 / r 4 ), while a mirror sheet with ε = (−ε0 + )I, μ = −μ0I, ξ = −0.99/c0I and of radii 0.05m–0.064m locates in the background with ε = ε0I, μ = μ0I, ξ = 0.99/c0I; (b) Plot of Re(Ez) for a curved sheet with ε = (−ε0 + )I, μ = −μ0I, ξ = −0.99/c0I in the background; (c) Plot of Re(Ez) for the optical system shown in (a): propagation of the incident plane wave from top to bottom is less perturbed than in (b). Absorption is δ = 10−14 and the frequency is 8.7GHz.

Fig. 11
Fig. 11

Plots of Re(Ez) for the same system as in Fig. 4(a), an s-polarized plane wave incidence with frequency 3GHz: (a) A bianisotropic slab lens with the thickness d = 0.1m; (b) A small electric antenna (radius of 0.002m) is inside the cloaking region with d0 < d/2 (d0 = 0.02m); (c) The antenna sits inside a bianisotropic background. Similar illustration is indicated in (d)–(f) when the frequency becomes 1.5GHz.

Fig. 12
Fig. 12

Plots of Re(Ez) under an s-polarized incidence with frequency 2.5GHz: (a) Cylindrical lens with parameters ε = (−ε0 + )I, μ = −μ0I, ξ = −0.99/c0I in the shell, and ε = ε0I, μ = μ0I, ξ = 0.99/c0I in both the background and core; a small absorption δ = 10−20 is introduced as the imaginary part of permittivity in the shell to improve the convergence of the package COMSOL; (b) An electric antenna (radius of 0.002m) locates inside the cloaking region r < r# (r = 0.045m); (c) An electric antenna in the bianisotropic background. The ostrich effect becomes weaker along with an increasing frequency, e.g. panels (d)–(f) for f = 3.5GHz, and (g)–(i) for f = 5GHz.

Fig. 13
Fig. 13

Comparison of Re(Ez) on the intercepting line for Fig. 12; solid black, dashed red and dotted-dashed blue curves are respectively representing the distribution of electric field along the upper intercepting line of the cylindrical lens, a lens with an electric antenna located in the cloaking region and a single electric antenna located at the bianisotropic background: (a) f = 2.5GHz, as a benchmark, the electric field along the intercepting line in a bianisotropic background without cylindrical lens and antenna is denoted in dotted black curve; (b) f = 3.5GHz; (c) f = 5GHz.

Fig. 14
Fig. 14

(a) Diagram of a chiral slab lens with ε = (ε0 + )I, μ = μ0I, ξ = 1.975/c0I, and the upper and lower regions are air. An s-polarized plane wave with wavelength λ = d = 0.1m is incident from above, and δ = 10−16. Plots of Re(Ez) for: (b) A chiral slab lens [25] when the wavelength of radiation is comparable with the size of the structure; (c) An electric antenna is placed in air; (d) When the antenna is placed very close to the chiral slab lens, partial external cloaking (i.e. for the forward scattering) can be observed comparing with panel (c).

Fig. 15
Fig. 15

(a) A mirror system made by air and bianisotropic media, a circular inclusion with ε = (ε0 + )I, μ = μ0I, ξ = 1.975/c0I is placed in the air, while a mirror inclusion of air locates in the media with ε = (ε0 + )I, μ = μ0I, ξ = 1.975/c0I; (b) Plot of Re(Ez) for the system wherein only an inclusion with ε = (ε0 + )I, μ = μ0I, ξ = 1.975/c0I in air, an s-polarized plane wave comes from above, the inclusion interrupt the propagation of the incidence; (c) Plot of Re(Ez) for the system (a): waves are transmitted. A small absorption δ = 10−16 is introduced and the frequency is 1.5GHz, the thickness of slab lens is d = 0.1m, and the radius of the inclusion is 0.025m.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

× E = ω ξ ̳ E + i ω μ ̳ H × H = i ω ε ̳ E + ω ξ ̳ H
v ̳ = J 1 v ̳ J T det ( J ) , v = ε , μ , ξ
x = exp ( r ) cos θ , y = exp ( r ) sin θ , z = z
J x r = ( x , y , z ) ( r , θ , z ) = [ exp ( r ) cos θ exp ( r ) sin θ 0 exp ( r ) sin θ exp ( r ) cos θ 0 0 0 1 ] .
v ̳ ( 2 ) ( a ) = v ̳ ( 3 ) ( b ) = v 0 diag ( 1 , 1 , exp ( 2 ln r b ) ) ,
v ̳ ( 2 ) ( a ) = v 0 diag ( 1 , 1 , exp ( 2 ln r b ) exp ( 2 ln r a ) ) = v 0 diag ( 1 , 1 , r s 4 / r a 4 ) .
v x ( 1 ) = + 1 , v y ( 1 ) = + 1 , v z ( 1 ) = + r s 4 / r c 4 , r r c v x ( 2 ) = 1 , v y ( 2 ) = 1 , v z ( 2 ) = r s 4 / r 4 , r c < r r s v x ( 3 ) = + 1 , v y ( 3 ) = + 1 , v z ( 3 ) = + 1 , r s < r .
J x x = J x r J r r J r x = R ( θ ) diag ( 1 , r , 1 ) diag ( g , 1 , 1 ) diag ( 1 , 1 r , 1 ) R 1 ( θ ) = R ( θ ) diag ( g , g r , 1 ) R ( θ )
R ( θ ) = [ cos θ sin θ 0 sin θ cos θ 0 0 0 1 ] .
T x x 1 = ( J x x T J x x / det ( J x x ) ) 1 = R ( θ ) diag ( g g r , g r g , g g r ) R ( θ ) .
1 r r ( r ε θ ( 1 ) E z r ) + 1 r 2 θ ( ε r ( 1 ) E z θ ) i r r ( r ξ θ ( 1 ) H z r ) i r 2 θ ( ξ r ( 1 ) H z θ ) = ω 2 ε z E z i ω 2 ξ z H z , 1 r r ( r ξ θ ( 1 ) E z r ) + 1 r 2 θ ( ξ r ( 1 ) E z θ ) + i r r ( r μ θ ( 1 ) H z r ) + i r 2 θ ( μ r ( 1 ) H z θ ) = i ω 2 ξ z E z ω 2 μ z H z ,
diag ( v r , v θ , v z ) = v 0 diag ( g g r , g r g , g g r ) .
ε 0 [ r ( g g E z r ) + g g 2 E z θ 2 + ω 2 a g g E z ] i ξ 0 [ r ( g g H z r ) + g g 2 H z θ 2 ω 2 a g g H z ] = 0 , i ξ 0 [ r ( g g E z r ) + g g 2 E z θ 2 ω 2 a g g E z ] + μ 0 [ r ( g g H z r ) + g g 2 H z θ 2 + ω 2 a g g H z ] = 0 ,
E z ( p ) ( r , θ ) = m [ a m ± ( p ) J m ( k ± g ( r ) ) + b m ± ( p ) H m ( 1 ) ( k ± g ( r ) ) ] e i m θ .
r = g ( r ) = { r r c 2 / r s 2 , r r c r s 2 / r , r c < r r s r , r > r s

Metrics