Abstract

We developed a low-cost, low-noise, tunable, high-peak-power, ultrafast laser system based on a SESAM-modelocked, solid-state Yb tungstate laser plus spectral broadening via a microstructured fiber followed by pulse compression. The spectral selection, tuning, and pulse compression are performed with a simple prism compressor. The output pulses are tunable from 800 to 1250 nm, with the pulse duration down to 25 fs, and average output power up to 150 mW, at 80 MHz pulse repetition rate. We introduce the figure of merit (FOM) for the two-photon and multi-photon imaging (or other nonlinear processes), which is a useful guideline in discussions and for designing the lasers for an improved microscopy signal. Using a 40 MHz pulse repetition rate laser system, with twice lower FOM, we obtained high signal-to-noise ratio two-photon fluorescence images with or without averaging, of mouse intestine section and zebra fish embryo. The obtained images demonstrate that the developed system is capable of nonlinear (TPE, SHG) imaging in a multimodal operation. The system could be potentially used in a variety of other techniques including, THG, CARS and applications such as nanosurgery.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature418(6895), 290–291 (2002).
    [CrossRef] [PubMed]
  3. F. Bourgeois and A. Ben-Yakar, “Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. elegans,” Opt. Express15(14), 8521–8531 (2007).
    [CrossRef] [PubMed]
  4. G. J. Tserevelakis, S. Psycharakis, B. Resan, F. Brunner, E. Gavgiotaki, K. J. Weingarten, and G. Filippidis, “Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool,” J. Biophotonics5(2), 200–207 (2012).
    [CrossRef] [PubMed]
  5. S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
    [CrossRef] [PubMed]
  6. M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
    [CrossRef]
  7. E.g. Chameleon laser from Coherent Inc. http://www.coherent.com/products/?1557/Chameleon-Family or Mai Tai laser from Newport http://www.newport.com/Mai-Tai-One-Box-Tunable-Ultrafast-Lasers/368124/1033/info.aspx
  8. F. Brunner, G. J. Spühler, J. A. Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller, “Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power,” Opt. Lett.25(15), 1119–1121 (2000).
    [CrossRef] [PubMed]
  9. F. Druon, F. Balembois, and P. Georges, “New materials for short-pulse amplifiers,” IEEE Photon. J.3(2), 268–273 (2011).
    [CrossRef]
  10. S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett.37(19), 3984–3986 (2012).
    [CrossRef] [PubMed]
  11. P. S. J. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  12. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]
  13. www.nkt.com
  14. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009).
    [CrossRef] [PubMed]
  15. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron.5(4), 1185–1192 (1999).
    [CrossRef]
  16. R. Aviles-Espinosa, S. I. C. O. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, and P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt.15(4), 046020 (2010).
    [CrossRef] [PubMed]
  17. U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
    [CrossRef]
  18. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011).
    [CrossRef] [PubMed]
  19. Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31(1), 119–121 (2006).
    [CrossRef] [PubMed]
  20. C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller, “SESAM modelocked Yb:CaGdAlO4 laser in the soliton modelocking regime with positive intracavity dispersion,” Opt. Express22(5), 6060–6077 (2014).
    [CrossRef] [PubMed]

2014

2013

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

2012

G. J. Tserevelakis, S. Psycharakis, B. Resan, F. Brunner, E. Gavgiotaki, K. J. Weingarten, and G. Filippidis, “Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool,” J. Biophotonics5(2), 200–207 (2012).
[CrossRef] [PubMed]

S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett.37(19), 3984–3986 (2012).
[CrossRef] [PubMed]

2011

2010

R. Aviles-Espinosa, S. I. C. O. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, and P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt.15(4), 046020 (2010).
[CrossRef] [PubMed]

2009

2007

2006

2003

P. S. J. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

2002

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature418(6895), 290–291 (2002).
[CrossRef] [PubMed]

2000

1999

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron.5(4), 1185–1192 (1999).
[CrossRef]

1996

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

1990

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Abdolvand, A.

Abdou-Ahmed, M.

Alonso-Ortega, C.

R. Aviles-Espinosa, S. I. C. O. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, and P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt.15(4), 046020 (2010).
[CrossRef] [PubMed]

Artigas, D.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011).
[CrossRef] [PubMed]

R. Aviles-Espinosa, S. I. C. O. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, and P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt.15(4), 046020 (2010).
[CrossRef] [PubMed]

Au, J. A.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Aviles-Espinosa, R.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011).
[CrossRef] [PubMed]

R. Aviles-Espinosa, S. I. C. O. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, and P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt.15(4), 046020 (2010).
[CrossRef] [PubMed]

Balembois, F.

Barbarin, Y.

Ben-Yakar, A.

Bourgeois, F.

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Brezinski, M. E.

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron.5(4), 1185–1192 (1999).
[CrossRef]

Brodschelm, A.

R. Aviles-Espinosa, S. I. C. O. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, and P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt.15(4), 046020 (2010).
[CrossRef] [PubMed]

Brunner, F.

G. J. Tserevelakis, S. Psycharakis, B. Resan, F. Brunner, E. Gavgiotaki, K. J. Weingarten, and G. Filippidis, “Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool,” J. Biophotonics5(2), 200–207 (2012).
[CrossRef] [PubMed]

F. Brunner, G. J. Spühler, J. A. Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller, “Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power,” Opt. Lett.25(15), 1119–1121 (2000).
[CrossRef] [PubMed]

Chichkov, B. N.

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Didierjean, J.

Druon, F.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Durst, M. E.

Farsari, M.

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
[CrossRef]

Filippidis, G.

G. J. Tserevelakis, S. Psycharakis, B. Resan, F. Brunner, E. Gavgiotaki, K. J. Weingarten, and G. Filippidis, “Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool,” J. Biophotonics5(2), 200–207 (2012).
[CrossRef] [PubMed]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011).
[CrossRef] [PubMed]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Fujimoto, J. G.

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron.5(4), 1185–1192 (1999).
[CrossRef]

Gavgiotaki, E.

G. J. Tserevelakis, S. Psycharakis, B. Resan, F. Brunner, E. Gavgiotaki, K. J. Weingarten, and G. Filippidis, “Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool,” J. Biophotonics5(2), 200–207 (2012).
[CrossRef] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Georges, P.

Goldner, P.

Graf, T.

Hamilton, C.

Harder, C.

Hoenninger, C.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Hönninger, C.

Jaffres, A.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Kaenders, W. G.

R. Aviles-Espinosa, S. I. C. O. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, and P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt.15(4), 046020 (2010).
[CrossRef] [PubMed]

Kaertner, F. X.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Keller, U.

Klenner, A.

Kobat, D.

König, K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature418(6895), 290–291 (2002).
[CrossRef] [PubMed]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Krainer, L.

Kuleshov, N. V.

Lagatsky, A. A.

Lichtenstein, N.

Loiseau, P.

Loza-Alvarez, P.

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011).
[CrossRef] [PubMed]

R. Aviles-Espinosa, S. I. C. O. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, and P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt.15(4), 046020 (2010).
[CrossRef] [PubMed]

Lucas Leclin, G.

Malcolm, G.

Mathew, M.

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Mayer, A. S.

Morier-Genoud, F.

Mottay, E.

Nishimura, N.

Olarte, O. E.

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

Paschotta, R.

Petit, J.

Phillips, C. R.

Psilodimitrakopoulos, S.

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

Psycharakis, S.

G. J. Tserevelakis, S. Psycharakis, B. Resan, F. Brunner, E. Gavgiotaki, K. J. Weingarten, and G. Filippidis, “Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool,” J. Biophotonics5(2), 200–207 (2012).
[CrossRef] [PubMed]

Resan, B.

G. J. Tserevelakis, S. Psycharakis, B. Resan, F. Brunner, E. Gavgiotaki, K. J. Weingarten, and G. Filippidis, “Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool,” J. Biophotonics5(2), 200–207 (2012).
[CrossRef] [PubMed]

Ricaud, S.

Russell, P. S. J.

P. S. J. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Rytz, D.

Santos, S. I. C. O.

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011).
[CrossRef] [PubMed]

R. Aviles-Espinosa, S. I. C. O. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, and P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt.15(4), 046020 (2010).
[CrossRef] [PubMed]

Schaffer, C. B.

Spühler, G. J.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Südmeyer, T.

Suganuma, A.

Tirlapur, U. K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature418(6895), 290–291 (2002).
[CrossRef] [PubMed]

Tserevelakis, G. J.

G. J. Tserevelakis, S. Psycharakis, B. Resan, F. Brunner, E. Gavgiotaki, K. J. Weingarten, and G. Filippidis, “Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool,” J. Biophotonics5(2), 200–207 (2012).
[CrossRef] [PubMed]

Viana, B.

Voss, A.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Weichelt, B.

Weingarten, K. J.

G. J. Tserevelakis, S. Psycharakis, B. Resan, F. Brunner, E. Gavgiotaki, K. J. Weingarten, and G. Filippidis, “Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool,” J. Biophotonics5(2), 200–207 (2012).
[CrossRef] [PubMed]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Weiss, S.

Wentsch, K.

Wong, A. W.

Xu, C.

Zaouter, Y.

Biomed. Opt. Express

IEEE J. Sel. Top. Quantum Electron.

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron.5(4), 1185–1192 (1999).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

IEEE Photon. J.

F. Druon, F. Balembois, and P. Georges, “New materials for short-pulse amplifiers,” IEEE Photon. J.3(2), 268–273 (2011).
[CrossRef]

J. Biomed. Opt.

R. Aviles-Espinosa, S. I. C. O. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, and P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt.15(4), 046020 (2010).
[CrossRef] [PubMed]

J. Biophotonics

G. J. Tserevelakis, S. Psycharakis, B. Resan, F. Brunner, E. Gavgiotaki, K. J. Weingarten, and G. Filippidis, “Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool,” J. Biophotonics5(2), 200–207 (2012).
[CrossRef] [PubMed]

Nat. Photonics

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
[CrossRef]

Nature

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature418(6895), 290–291 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

PLoS ONE

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Science

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

P. S. J. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other

E.g. Chameleon laser from Coherent Inc. http://www.coherent.com/products/?1557/Chameleon-Family or Mai Tai laser from Newport http://www.newport.com/Mai-Tai-One-Box-Tunable-Ultrafast-Lasers/368124/1033/info.aspx

www.nkt.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The tunable laser system layout.

Fig. 2
Fig. 2

(a) The total spectrally broadened laser system output (black curve) and selected spectrum with FWHM of approximately 100 nm, centered at 960 nm (red curve). (b) Aurocorrelation of the pulse, compressed down to 25 fs pulse duration.

Fig. 3
Fig. 3

Compressed laser system output pulse average power and duration versus central wavelength for a 100 nm selected spectral slice.

Fig. 4
Fig. 4

Figure of merit (FOM) map of our imaging laser system, optically pumped VECSEL [18], our Yb oscillator, and a typical Ti:Sapphire laser. Regions in red correspond to FOMs not suitable for imaging due to different power-related effects.

Fig. 5
Fig. 5

Spectrally resolved image of mouse intestine section without averaging (left), and with 10 frames averaging (right). Alexa Fluor is depicted green and SYTOX Green red.

Fig. 6
Fig. 6

Fixed zebra fish embryo imaging with the residual oscillator beam. Single frame image, without averaging is shown on the left, and with 10 frames averaging on the right.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P peak = P average Rτ
P peak ( 2ω )=k P peak 2 ( ω )
FOM P average ( 2ω ) P average ( ω ) P peak ( ω )
FO M n P average ( nω ) P average ( ω ) P peak n1 ( ω )

Metrics