Abstract

Rotating mirror cameras represent a workhorse technology for high speed imaging in the MHz framing regime. The technique requires that the target image be swept across a series of juxtaposed CCD sensors, via reflection from a rapidly rotating mirror. Employing multiple sensors in this fashion can lead to spatial jitter in the resultant video file, due to component misalignments along the individual optical paths to each CCD. Here, we highlight that static and dynamic fiducials can be exploited as an effective software-borne countermeasure to jitter, suppressing the standard deviation of the corrected file relative to the raw data by up to 88.5% maximally, and 66.5% on average over the available range of framing rates. Direct comparison with industry-standard algorithms demonstrated that our fiducial-based strategy is as effective at jitter reduction, but typically also leads to an aesthetically superior final form in the post-processed video files.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Campbell and M. R. Prausnitz, “Future directions for therapeutic ultrasound,” Ultrasound Med. Biol. 33(4), 657 (2007).
    [Crossref] [PubMed]
  2. P. A. Prentice, A. Cuschieri, K. Dholakia, M. R. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
    [Crossref]
  3. S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40(1), 257–285 (2008).
    [Crossref]
  4. P. A. Prentice, “Membrane disruption by optically controlled cavitation,” Ph.D. Thesis (University of Dundee, 2006).
  5. H. O. Rolfnes, “Sonoptics: Applications of light and sound in the context of biomedicine,” Ph.D. Thesis, (University of Dundee, 2012).
  6. V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
    [Crossref]
  7. C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum. 74(12), 5026 (2003).
    [Crossref]
  8. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [Crossref] [PubMed]
  9. S. Erturk, “Digital image stabilization with sub-image phase correlation based global motion estimation,” IEEE Trans. Consum. Electron. 49(4), 1320–1325 (2003).
    [Crossref]
  10. A. Litvin, J. Konrad, and W. Karl, “Probabilistic video stabilization using kalman filtering and mosaicking,” Proc. Image Video Commun. IS&T/SPIE Symp. Electron. Imaging, Santa Clara, CA., 663–74 (2003).
    [Crossref]
  11. E. A. Igel and M. Kristiansen, Rotating Mirror Streak and Framing Cameras. (SPIE Press, 1997).
  12. A. Dubovik, The Photographic Recording of High Speed Processes (Wiley Interscience, 1981).
  13. M. Conneely, H. O. Rolfsnes, C. Main, D. McGloin, and P. A. Campbell, “On the accuracy of framing-rate measurements in ultra-high speed rotating mirror cameras,” Opt. Express 19(17), 16432–16437 (2011).
    [Crossref] [PubMed]
  14. M. Conneely, H. O. Rolfsnes, D. McGloin, C. Main, and P. A. Campbell, “Role of mirror dynamics in determining the accuracy of framing rate in an ultra high speed rotating mirror camera,” Proc. SPIE 8125, 812512 (2011).
    [Crossref]
  15. Cordin 550 User’s Manual (Cordin Company, Inc, 2004).
  16. H. M. Graham and G. A. Leavitt, “Air spark fiducial for ultra-high speed photography,” Rev. Sci. Instrum. 44(11), 1630–1632 (1973).
    [Crossref]
  17. T. Huen, “Programmable 10 MHz optical fiducial system for hydrodiagnostic cameras,” Proc. SPIE 832, 63–71 (1988).
    [Crossref]
  18. L. L. Shaw, S. A. Muelder, and A. T. Rivera, “Slit-mounted LED fiducial system for rotating mirror streak cameras,” Proc. SPIE 1539, 230–236 (1992).
    [Crossref]
  19. S. Ray, High Speed Photography and Photonics (SPIE, 1997).
  20. E. Meijering, O. Dzyubachyk, and I. Smal, “Methods for cell and particle tracking,” Methods Enzymol. 504, 183–200 (2012).
    [Crossref] [PubMed]

2012 (1)

E. Meijering, O. Dzyubachyk, and I. Smal, “Methods for cell and particle tracking,” Methods Enzymol. 504, 183–200 (2012).
[Crossref] [PubMed]

2011 (2)

M. Conneely, H. O. Rolfsnes, C. Main, D. McGloin, and P. A. Campbell, “On the accuracy of framing-rate measurements in ultra-high speed rotating mirror cameras,” Opt. Express 19(17), 16432–16437 (2011).
[Crossref] [PubMed]

M. Conneely, H. O. Rolfsnes, D. McGloin, C. Main, and P. A. Campbell, “Role of mirror dynamics in determining the accuracy of framing rate in an ultra high speed rotating mirror camera,” Proc. SPIE 8125, 812512 (2011).
[Crossref]

2009 (1)

V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
[Crossref]

2008 (2)

M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
[Crossref] [PubMed]

S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40(1), 257–285 (2008).
[Crossref]

2007 (1)

P. A. Campbell and M. R. Prausnitz, “Future directions for therapeutic ultrasound,” Ultrasound Med. Biol. 33(4), 657 (2007).
[Crossref] [PubMed]

2005 (1)

P. A. Prentice, A. Cuschieri, K. Dholakia, M. R. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

2003 (2)

C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum. 74(12), 5026 (2003).
[Crossref]

S. Erturk, “Digital image stabilization with sub-image phase correlation based global motion estimation,” IEEE Trans. Consum. Electron. 49(4), 1320–1325 (2003).
[Crossref]

1992 (1)

L. L. Shaw, S. A. Muelder, and A. T. Rivera, “Slit-mounted LED fiducial system for rotating mirror streak cameras,” Proc. SPIE 1539, 230–236 (1992).
[Crossref]

1988 (1)

T. Huen, “Programmable 10 MHz optical fiducial system for hydrodiagnostic cameras,” Proc. SPIE 832, 63–71 (1988).
[Crossref]

1973 (1)

H. M. Graham and G. A. Leavitt, “Air spark fiducial for ultra-high speed photography,” Rev. Sci. Instrum. 44(11), 1630–1632 (1973).
[Crossref]

Borsboom, J.

C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum. 74(12), 5026 (2003).
[Crossref]

Campbell, P.

P. A. Prentice, A. Cuschieri, K. Dholakia, M. R. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

Campbell, P. A.

M. Conneely, H. O. Rolfsnes, D. McGloin, C. Main, and P. A. Campbell, “Role of mirror dynamics in determining the accuracy of framing rate in an ultra high speed rotating mirror camera,” Proc. SPIE 8125, 812512 (2011).
[Crossref]

M. Conneely, H. O. Rolfsnes, C. Main, D. McGloin, and P. A. Campbell, “On the accuracy of framing-rate measurements in ultra-high speed rotating mirror cameras,” Opt. Express 19(17), 16432–16437 (2011).
[Crossref] [PubMed]

P. A. Campbell and M. R. Prausnitz, “Future directions for therapeutic ultrasound,” Ultrasound Med. Biol. 33(4), 657 (2007).
[Crossref] [PubMed]

Chin, C. T.

C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum. 74(12), 5026 (2003).
[Crossref]

Cojoc, D.

V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
[Crossref]

Conneely, M.

M. Conneely, H. O. Rolfsnes, D. McGloin, C. Main, and P. A. Campbell, “Role of mirror dynamics in determining the accuracy of framing rate in an ultra high speed rotating mirror camera,” Proc. SPIE 8125, 812512 (2011).
[Crossref]

M. Conneely, H. O. Rolfsnes, C. Main, D. McGloin, and P. A. Campbell, “On the accuracy of framing-rate measurements in ultra-high speed rotating mirror cameras,” Opt. Express 19(17), 16432–16437 (2011).
[Crossref] [PubMed]

Cuschieri, A.

P. A. Prentice, A. Cuschieri, K. Dholakia, M. R. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

de Jong, N.

V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
[Crossref]

C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum. 74(12), 5026 (2003).
[Crossref]

Dholakia, K.

P. A. Prentice, A. Cuschieri, K. Dholakia, M. R. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

Di Fabrizio, E.

V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
[Crossref]

Dollet, B.

V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
[Crossref]

Dzyubachyk, O.

E. Meijering, O. Dzyubachyk, and I. Smal, “Methods for cell and particle tracking,” Methods Enzymol. 504, 183–200 (2012).
[Crossref] [PubMed]

Erturk, S.

S. Erturk, “Digital image stabilization with sub-image phase correlation based global motion estimation,” IEEE Trans. Consum. Electron. 49(4), 1320–1325 (2003).
[Crossref]

Etoh, T. G.

S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40(1), 257–285 (2008).
[Crossref]

Fienup, J. R.

Frijlink, M. E.

C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum. 74(12), 5026 (2003).
[Crossref]

Garbin, V.

V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
[Crossref]

Graham, H. M.

H. M. Graham and G. A. Leavitt, “Air spark fiducial for ultra-high speed photography,” Rev. Sci. Instrum. 44(11), 1630–1632 (1973).
[Crossref]

Guizar-Sicairos, M.

Huen, T.

T. Huen, “Programmable 10 MHz optical fiducial system for hydrodiagnostic cameras,” Proc. SPIE 832, 63–71 (1988).
[Crossref]

Lancée, C.

C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum. 74(12), 5026 (2003).
[Crossref]

Leavitt, G. A.

H. M. Graham and G. A. Leavitt, “Air spark fiducial for ultra-high speed photography,” Rev. Sci. Instrum. 44(11), 1630–1632 (1973).
[Crossref]

Lohse, D.

V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
[Crossref]

C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum. 74(12), 5026 (2003).
[Crossref]

Main, C.

M. Conneely, H. O. Rolfsnes, D. McGloin, C. Main, and P. A. Campbell, “Role of mirror dynamics in determining the accuracy of framing rate in an ultra high speed rotating mirror camera,” Proc. SPIE 8125, 812512 (2011).
[Crossref]

M. Conneely, H. O. Rolfsnes, C. Main, D. McGloin, and P. A. Campbell, “On the accuracy of framing-rate measurements in ultra-high speed rotating mirror cameras,” Opt. Express 19(17), 16432–16437 (2011).
[Crossref] [PubMed]

Mastik, F.

C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum. 74(12), 5026 (2003).
[Crossref]

McGloin, D.

M. Conneely, H. O. Rolfsnes, D. McGloin, C. Main, and P. A. Campbell, “Role of mirror dynamics in determining the accuracy of framing rate in an ultra high speed rotating mirror camera,” Proc. SPIE 8125, 812512 (2011).
[Crossref]

M. Conneely, H. O. Rolfsnes, C. Main, D. McGloin, and P. A. Campbell, “On the accuracy of framing-rate measurements in ultra-high speed rotating mirror cameras,” Opt. Express 19(17), 16432–16437 (2011).
[Crossref] [PubMed]

Meijering, E.

E. Meijering, O. Dzyubachyk, and I. Smal, “Methods for cell and particle tracking,” Methods Enzymol. 504, 183–200 (2012).
[Crossref] [PubMed]

Muelder, S. A.

L. L. Shaw, S. A. Muelder, and A. T. Rivera, “Slit-mounted LED fiducial system for rotating mirror streak cameras,” Proc. SPIE 1539, 230–236 (1992).
[Crossref]

Overvelde, M.

V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
[Crossref]

Prausnitz, M. R.

P. A. Campbell and M. R. Prausnitz, “Future directions for therapeutic ultrasound,” Ultrasound Med. Biol. 33(4), 657 (2007).
[Crossref] [PubMed]

P. A. Prentice, A. Cuschieri, K. Dholakia, M. R. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

Prentice, P. A.

P. A. Prentice, A. Cuschieri, K. Dholakia, M. R. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

Prosperetti, A.

V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
[Crossref]

Rivera, A. T.

L. L. Shaw, S. A. Muelder, and A. T. Rivera, “Slit-mounted LED fiducial system for rotating mirror streak cameras,” Proc. SPIE 1539, 230–236 (1992).
[Crossref]

Rolfsnes, H. O.

M. Conneely, H. O. Rolfsnes, C. Main, D. McGloin, and P. A. Campbell, “On the accuracy of framing-rate measurements in ultra-high speed rotating mirror cameras,” Opt. Express 19(17), 16432–16437 (2011).
[Crossref] [PubMed]

M. Conneely, H. O. Rolfsnes, D. McGloin, C. Main, and P. A. Campbell, “Role of mirror dynamics in determining the accuracy of framing rate in an ultra high speed rotating mirror camera,” Proc. SPIE 8125, 812512 (2011).
[Crossref]

Shaw, L. L.

L. L. Shaw, S. A. Muelder, and A. T. Rivera, “Slit-mounted LED fiducial system for rotating mirror streak cameras,” Proc. SPIE 1539, 230–236 (1992).
[Crossref]

Smal, I.

E. Meijering, O. Dzyubachyk, and I. Smal, “Methods for cell and particle tracking,” Methods Enzymol. 504, 183–200 (2012).
[Crossref] [PubMed]

Takehara, K.

S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40(1), 257–285 (2008).
[Crossref]

Thoroddsen, S. T.

S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40(1), 257–285 (2008).
[Crossref]

Thurman, S. T.

van Wijngaarden, L.

V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
[Crossref]

Versluis, M.

V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
[Crossref]

C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum. 74(12), 5026 (2003).
[Crossref]

Annu. Rev. Fluid Mech. (1)

S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40(1), 257–285 (2008).
[Crossref]

IEEE Trans. Consum. Electron. (1)

S. Erturk, “Digital image stabilization with sub-image phase correlation based global motion estimation,” IEEE Trans. Consum. Electron. 49(4), 1320–1325 (2003).
[Crossref]

Methods Enzymol. (1)

E. Meijering, O. Dzyubachyk, and I. Smal, “Methods for cell and particle tracking,” Methods Enzymol. 504, 183–200 (2012).
[Crossref] [PubMed]

Nat. Phys. (1)

P. A. Prentice, A. Cuschieri, K. Dholakia, M. R. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Fluids (1)

V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids 21(9), 092003 (2009).
[Crossref]

Proc. SPIE (3)

M. Conneely, H. O. Rolfsnes, D. McGloin, C. Main, and P. A. Campbell, “Role of mirror dynamics in determining the accuracy of framing rate in an ultra high speed rotating mirror camera,” Proc. SPIE 8125, 812512 (2011).
[Crossref]

T. Huen, “Programmable 10 MHz optical fiducial system for hydrodiagnostic cameras,” Proc. SPIE 832, 63–71 (1988).
[Crossref]

L. L. Shaw, S. A. Muelder, and A. T. Rivera, “Slit-mounted LED fiducial system for rotating mirror streak cameras,” Proc. SPIE 1539, 230–236 (1992).
[Crossref]

Rev. Sci. Instrum. (2)

H. M. Graham and G. A. Leavitt, “Air spark fiducial for ultra-high speed photography,” Rev. Sci. Instrum. 44(11), 1630–1632 (1973).
[Crossref]

C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum. 74(12), 5026 (2003).
[Crossref]

Ultrasound Med. Biol. (1)

P. A. Campbell and M. R. Prausnitz, “Future directions for therapeutic ultrasound,” Ultrasound Med. Biol. 33(4), 657 (2007).
[Crossref] [PubMed]

Other (7)

P. A. Prentice, “Membrane disruption by optically controlled cavitation,” Ph.D. Thesis (University of Dundee, 2006).

H. O. Rolfnes, “Sonoptics: Applications of light and sound in the context of biomedicine,” Ph.D. Thesis, (University of Dundee, 2012).

A. Litvin, J. Konrad, and W. Karl, “Probabilistic video stabilization using kalman filtering and mosaicking,” Proc. Image Video Commun. IS&T/SPIE Symp. Electron. Imaging, Santa Clara, CA., 663–74 (2003).
[Crossref]

E. A. Igel and M. Kristiansen, Rotating Mirror Streak and Framing Cameras. (SPIE Press, 1997).

A. Dubovik, The Photographic Recording of High Speed Processes (Wiley Interscience, 1981).

Cordin 550 User’s Manual (Cordin Company, Inc, 2004).

S. Ray, High Speed Photography and Photonics (SPIE, 1997).

Supplementary Material (2)

» Media 1: MOV (187 KB)     
» Media 2: MP4 (3557 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic overview of the optical arrangement within the sensor array housing of the Cordin 550-62 camera. (inset) Representative image of two 10-micrometer diameter glass calibration beads, and indication of the coordinate system used in the methodology.

Fig. 2
Fig. 2

Relative displacements of a static fiducial (in pixels) over frames i = 1-23, as referenced to frame 0. Experiments were conducted over a range of framing rates, as indicated in the inset legend. (a) (left) horizontal relative displacement dxi; together with (right) an expanded vertical scale plot over frames 12-23 of the same data. (b) (left) Plot of vertical relative displacements dyi; together with (right) expanded vertical scale equivalent data over frames 12-23. Media 1, shows an animated comparison with an industry-standard jitter reduction routine [8]: evidently, both methods can be as effective at pin-pointing misaligned frames.

Fig. 3
Fig. 3

(a-h): A sequence captured at 0.33 Mfps and highlighting the characteristic difference in native fiducials. A static fiducial is shown (red circle 1 in frame (a)) with a dynamic fiducial (marked with a yellow circle numbered 2 in frame (a), and subsequently tracked as a green circle to denote its position in previous frames). A 10 μm scale bar is shown at the bottom of frame (h). Media 2 illustrates a direct comparison of such data, (with static fiducial highlighted) for the cases of: (a) raw data; (b) fiducial corrected data; & (c) industry standard [8] corrected data.

Fig. 4
Fig. 4

Plot of the absolute average dynamic fiducial velocity, |Vy| [m.s−1] against frame rate Ω [Mfps] for selected experimental case studies. |Vy| data in grey represent the uncorrected raw data; whereas |Vy| in black are the corresponding jitter-corrected data emerging from the exploitation of static fiducals and averaged across all frames. Standard deviation bars are included for each measurement.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d x i = x i x 0
d y i = y i y 0
d x i , o = x i , o x 0 , o
d y i , o = y i , o y 0 , o
d x i * = d x i , o d x i
d y i * = d y i , o d y i .

Metrics