Abstract

We numerically investigate a D-shaped fiber surface plasmon resonance sensor based on all-solid photonic crystal fiber (PCF) with finite element method. In the side-polished PCF sensor, field leakage is guided to penetrate through the gap between the rods, causing a pronounced phase modulation in the deep polishing case. Taking advantage of these amplified phase shifts, a high-performance fiber sensor design is proposed. The significant enhancements arising from this new sensor design should lift the performance of the fiber SPR sensor into the range capable of detecting a wide range of biochemical interactions, which makes it especially attractive for many in vivo and in situ bioanalysis applications. Several parameters which influence the field leakage, such as the polishing position, the pitch of the PCF, and the rod diameter, are inspected to evaluate their impacts. Furthermore, we develop a mathematical model to describe the effects of varying the structural parameters of a D-shaped PCF sensor on the evanescent field and the sensor performance.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration

E. K. Akowuah, T. Gorman, and S. Haxha
Opt. Express 17(26) 23511-23521 (2009)

Ultrahigh sensitivity polarimetric strain sensor based upon D-shaped optical fiber and surface plasmon resonance technology

Yu-Lung Lo, Chin-Ho Chuang, and Zheng-Wei Lin
Opt. Lett. 36(13) 2489-2491 (2011)

Polarization-dependent refractometer for discrimination of temperature and ambient refractive index

H.-J. Kim, O.-J. Kwon, S. B. Lee, and Y.-G. Han
Opt. Lett. 37(11) 1802-1804 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, Surface Plasmon Resonance Based Sensors, (Springer, 2006).
    [Crossref]
  2. R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuat. B-Chem. 12, 213–220 (1993).
    [Crossref]
  3. S. A. Kim, S. J. Kim, H. Moon, and S. B. Jun, “In vivo optical neural recording using fiber-based surface plasmon resonance,” Opt. Lett. 37, 614–616 (2012).
    [Crossref] [PubMed]
  4. F. Delport, J. Pollet, K. Janssen, B. Verbruggen, K. Knez, D. Spasic, and J. Lammertyn, “Real-time monitoring of dna hybridization and melting processes using a fiber optic sensor,” Nanotechnology 23, 065503 (2012).
    [Crossref] [PubMed]
  5. Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber {SPR} sensor for living cell activation,” Biosens. Bioelectron. 25, 1244–1247 (2010).
    [Crossref]
  6. H. W. Lee, M. A. Schmidt, and P. S. Russell, “Excitation of a nanowire molecule in gold-filled photonic crystal fiber,” Opt. Lett. 37, 2946–2948 (2012).
    [Crossref] [PubMed]
  7. P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20, 28409–28417 (2012).
    [Crossref] [PubMed]
  8. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14, 11616–11621 (2006).
    [Crossref] [PubMed]
  9. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
    [Crossref] [PubMed]
  10. Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
    [Crossref] [PubMed]
  11. P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12, 3145–3150 (2012).
    [Crossref] [PubMed]
  12. J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36, 3593–3595 (2011).
    [Crossref] [PubMed]
  13. S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52, 337–344 (2014).
    [Crossref]
  14. M. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31, 3167–3175 (2013).
    [Crossref]
  15. J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber bragg grating sensors,” Laser Photon. Rev. 7, 83–108 (2013).
    [Crossref]
  16. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35, 637–639 (2010).
    [Crossref] [PubMed]
  17. M.-H. Chiu, S.-F. Wang, and R.-S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30, 233–235 (2005).
    [Crossref] [PubMed]
  18. Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced raman scattering sensor based on d-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
    [Crossref]
  19. H.-Y. Lin, W.-H. Tsai, Y.-C. Tsao, and B.-C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt. 46, 800–806 (2007).
    [Crossref] [PubMed]
  20. Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
    [Crossref]
  21. Y. J. He, “Novel d-shape lspr fiber sensor based on nano-metal strips,” Opt. Express 21, 23498–23510 (2013).
    [Crossref] [PubMed]
  22. M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid d-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
    [Crossref]
  23. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17, 21191–21204 (2009).
    [Crossref] [PubMed]
  24. Y.-L. Lo, C.-H. Chuang, and Z.-W. Lin, “Ultrahigh sensitivity polarimetric strain sensor based upon d-shaped optical fiber and surface plasmon resonance technology,” Opt. Lett. 36, 2489–2491 (2011).
    [Crossref] [PubMed]
  25. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29, 2378–2380 (2004).
    [Crossref] [PubMed]
  26. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
    [Crossref]
  27. Y. Shao, Y. Li, D. Gu, K. Zhang, J. Qu, J. He, X. Li, S.-Y. Wu, H.-P. Ho, M. G. Somekh, and H. Niu, “Wavelength-multiplexing phase-sensitive surface plasmon imaging sensor,” Opt. Lett. 38, 1370–1372 (2013).
    [Crossref] [PubMed]

2014 (2)

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52, 337–344 (2014).
[Crossref]

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
[Crossref]

2013 (4)

2012 (7)

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid d-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

S. A. Kim, S. J. Kim, H. Moon, and S. B. Jun, “In vivo optical neural recording using fiber-based surface plasmon resonance,” Opt. Lett. 37, 614–616 (2012).
[Crossref] [PubMed]

F. Delport, J. Pollet, K. Janssen, B. Verbruggen, K. Knez, D. Spasic, and J. Lammertyn, “Real-time monitoring of dna hybridization and melting processes using a fiber optic sensor,” Nanotechnology 23, 065503 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, and P. S. Russell, “Excitation of a nanowire molecule in gold-filled photonic crystal fiber,” Opt. Lett. 37, 2946–2948 (2012).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20, 28409–28417 (2012).
[Crossref] [PubMed]

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref] [PubMed]

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12, 3145–3150 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber {SPR} sensor for living cell activation,” Biosens. Bioelectron. 25, 1244–1247 (2010).
[Crossref]

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35, 637–639 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

2005 (3)

M.-H. Chiu, S.-F. Wang, and R.-S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30, 233–235 (2005).
[Crossref] [PubMed]

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced raman scattering sensor based on d-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[Crossref]

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

2004 (1)

1993 (1)

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuat. B-Chem. 12, 213–220 (1993).
[Crossref]

Alam, M.

Albert, J.

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52, 337–344 (2014).
[Crossref]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber bragg grating sensors,” Laser Photon. Rev. 7, 83–108 (2013).
[Crossref]

M. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31, 3167–3175 (2013).
[Crossref]

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35, 637–639 (2010).
[Crossref] [PubMed]

Araki, A.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber {SPR} sensor for living cell activation,” Biosens. Bioelectron. 25, 1244–1247 (2010).
[Crossref]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Caucheteur, C.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber bragg grating sensors,” Laser Photon. Rev. 7, 83–108 (2013).
[Crossref]

Chang, R.-S.

Chang, Y.-L.

Chapelle, M.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Chen, C.

Chen, L.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid d-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

Chen, Y.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
[Crossref]

Chiu, M.-H.

Chuang, C.-H.

Dakka, M. A.

Delport, F.

F. Delport, J. Pollet, K. Janssen, B. Verbruggen, K. Knez, D. Spasic, and J. Lammertyn, “Real-time monitoring of dna hybridization and melting processes using a fiber optic sensor,” Nanotechnology 23, 065503 (2012).
[Crossref] [PubMed]

Fan, P.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
[Crossref]

Fu, X.-Y.

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref] [PubMed]

Gao, S.

Grigorenko, A. N.

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Gu, C.

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced raman scattering sensor based on d-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[Crossref]

Gu, D.

Guan, B.-O.

Hao, C.-J.

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref] [PubMed]

Hassani, A.

Hautakorpi, M.

He, J.

He, Y. J.

Hide, M.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber {SPR} sensor for living cell activation,” Biosens. Bioelectron. 25, 1244–1247 (2010).
[Crossref]

Hiragun, T.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber {SPR} sensor for living cell activation,” Biosens. Bioelectron. 25, 1244–1247 (2010).
[Crossref]

Ho, H. P.

Ho, H.-P.

Homola, J.

J. Homola, Surface Plasmon Resonance Based Sensors, (Springer, 2006).
[Crossref]

Huang, X.-H.

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref] [PubMed]

Ianoul, A.

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52, 337–344 (2014).
[Crossref]

Janssen, K.

F. Delport, J. Pollet, K. Janssen, B. Verbruggen, K. Knez, D. Spasic, and J. Lammertyn, “Real-time monitoring of dna hybridization and melting processes using a fiber optic sensor,” Nanotechnology 23, 065503 (2012).
[Crossref] [PubMed]

Jin, L.

Jorgenson, R.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuat. B-Chem. 12, 213–220 (1993).
[Crossref]

Jun, S. B.

Kabashin, A. V.

Kim, S. A.

Kim, S. J.

Kimura, T.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber {SPR} sensor for living cell activation,” Biosens. Bioelectron. 25, 1244–1247 (2010).
[Crossref]

Knez, K.

F. Delport, J. Pollet, K. Janssen, B. Verbruggen, K. Knez, D. Spasic, and J. Lammertyn, “Real-time monitoring of dna hybridization and melting processes using a fiber optic sensor,” Nanotechnology 23, 065503 (2012).
[Crossref] [PubMed]

Kong, S. K.

Lammertyn, J.

F. Delport, J. Pollet, K. Janssen, B. Verbruggen, K. Knez, D. Spasic, and J. Lammertyn, “Real-time monitoring of dna hybridization and melting processes using a fiber optic sensor,” Nanotechnology 23, 065503 (2012).
[Crossref] [PubMed]

Law, W. C.

Lee, H. W.

Lepinay, S.

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52, 337–344 (2014).
[Crossref]

Li, J.

Li, X.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
[Crossref]

Y. Shao, Y. Li, D. Gu, K. Zhang, J. Qu, J. He, X. Li, S.-Y. Wu, H.-P. Ho, M. G. Somekh, and H. Niu, “Wavelength-multiplexing phase-sensitive surface plasmon imaging sensor,” Opt. Lett. 38, 1370–1372 (2013).
[Crossref] [PubMed]

Li, Y.

Lin, C.

Lin, H.-Y.

Lin, Z.-W.

Liu, D.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid d-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

Lo, Y.-L.

Lu, P.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid d-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

Lu, Y.

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref] [PubMed]

Ludvigsen, H.

Lv, C.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid d-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

Macias, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Mattinen, M.

Moon, H.

Nakatani, T.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber {SPR} sensor for living cell activation,” Biosens. Bioelectron. 25, 1244–1247 (2010).
[Crossref]

Niu, H.

Okamoto, K.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber {SPR} sensor for living cell activation,” Biosens. Bioelectron. 25, 1244–1247 (2010).
[Crossref]

Patskovsky, S.

Pollet, J.

F. Delport, J. Pollet, K. Janssen, B. Verbruggen, K. Knez, D. Spasic, and J. Lammertyn, “Real-time monitoring of dna hybridization and melting processes using a fiber optic sensor,” Nanotechnology 23, 065503 (2012).
[Crossref] [PubMed]

Qu, J.

Quan, Z.

Ran, Y.

Russell, P. S.

Schmidt, M. A.

Schwartzberg, A. M.

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced raman scattering sensor based on d-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[Crossref]

Shao, L.-Y.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber bragg grating sensors,” Laser Photon. Rev. 7, 83–108 (2013).
[Crossref]

Shao, Y.

Sheu, B.-C.

Shevchenko, Y.

Skorobogatiy, M.

Somekh, M. G.

Spasic, D.

F. Delport, J. Pollet, K. Janssen, B. Verbruggen, K. Knez, D. Spasic, and J. Lammertyn, “Real-time monitoring of dna hybridization and melting processes using a fiber optic sensor,” Nanotechnology 23, 065503 (2012).
[Crossref] [PubMed]

Staff, A.

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52, 337–344 (2014).
[Crossref]

Sun, L.-P.

Suzuki, H.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber {SPR} sensor for living cell activation,” Biosens. Bioelectron. 25, 1244–1247 (2010).
[Crossref]

Tan, Z.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
[Crossref]

Tian, M.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid d-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

Tong, L.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12, 3145–3150 (2012).
[Crossref] [PubMed]

Tsai, W.-H.

Tsao, Y.-C.

Tsutsui, T.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber {SPR} sensor for living cell activation,” Biosens. Bioelectron. 25, 1244–1247 (2010).
[Crossref]

Uebel, P.

Verbruggen, B.

F. Delport, J. Pollet, K. Janssen, B. Verbruggen, K. Knez, D. Spasic, and J. Lammertyn, “Real-time monitoring of dna hybridization and melting processes using a fiber optic sensor,” Nanotechnology 23, 065503 (2012).
[Crossref] [PubMed]

Vial, A.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Wang, P.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12, 3145–3150 (2012).
[Crossref] [PubMed]

Wang, S.-F.

Wen, W.-Q.

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref] [PubMed]

Wu, B.-Q.

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref] [PubMed]

Wu, S. Y.

Wu, S.-Y.

Xia, Y.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12, 3145–3150 (2012).
[Crossref] [PubMed]

Xu, X.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12, 3145–3150 (2012).
[Crossref] [PubMed]

Yanase, Y.

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber {SPR} sensor for living cell activation,” Biosens. Bioelectron. 25, 1244–1247 (2010).
[Crossref]

Yao, J.-Q.

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref] [PubMed]

Yee, S.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuat. B-Chem. 12, 213–220 (1993).
[Crossref]

Ying, Y.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12, 3145–3150 (2012).
[Crossref] [PubMed]

Zhang, J. Z.

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced raman scattering sensor based on d-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[Crossref]

Zhang, K.

Zhang, L.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12, 3145–3150 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced raman scattering sensor based on d-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced raman scattering sensor based on d-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[Crossref]

Biosens. Bioelectron. (2)

Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, and M. Hide, “Development of an optical fiber {SPR} sensor for living cell activation,” Biosens. Bioelectron. 25, 1244–1247 (2010).
[Crossref]

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52, 337–344 (2014).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber bragg grating sensors,” Laser Photon. Rev. 7, 83–108 (2013).
[Crossref]

Nano Lett. (1)

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12, 3145–3150 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

F. Delport, J. Pollet, K. Janssen, B. Verbruggen, K. Knez, D. Spasic, and J. Lammertyn, “Real-time monitoring of dna hybridization and melting processes using a fiber optic sensor,” Nanotechnology 23, 065503 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid d-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35, 637–639 (2010).
[Crossref] [PubMed]

Y.-L. Lo, C.-H. Chuang, and Z.-W. Lin, “Ultrahigh sensitivity polarimetric strain sensor based upon d-shaped optical fiber and surface plasmon resonance technology,” Opt. Lett. 36, 2489–2491 (2011).
[Crossref] [PubMed]

J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36, 3593–3595 (2011).
[Crossref] [PubMed]

S. A. Kim, S. J. Kim, H. Moon, and S. B. Jun, “In vivo optical neural recording using fiber-based surface plasmon resonance,” Opt. Lett. 37, 614–616 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, and P. S. Russell, “Excitation of a nanowire molecule in gold-filled photonic crystal fiber,” Opt. Lett. 37, 2946–2948 (2012).
[Crossref] [PubMed]

Y. Shao, Y. Li, D. Gu, K. Zhang, J. Qu, J. He, X. Li, S.-Y. Wu, H.-P. Ho, M. G. Somekh, and H. Niu, “Wavelength-multiplexing phase-sensitive surface plasmon imaging sensor,” Opt. Lett. 38, 1370–1372 (2013).
[Crossref] [PubMed]

S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29, 2378–2380 (2004).
[Crossref] [PubMed]

M.-H. Chiu, S.-F. Wang, and R.-S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30, 233–235 (2005).
[Crossref] [PubMed]

Phys. Rev. B (1)

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Plasmonics (1)

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
[Crossref]

Sens. Actuat. B-Chem. (1)

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuat. B-Chem. 12, 213–220 (1993).
[Crossref]

Sensors (1)

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref] [PubMed]

Other (1)

J. Homola, Surface Plasmon Resonance Based Sensors, (Springer, 2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Enlarged schematic of fiber SPR sensor based on an all-solid PCF and the proposed experimental setup for phase interrogation.

Fig. 2
Fig. 2

Left: Electric field distribution and stimulation of plasmonic waves at wavelengths near λres, for different polishing plane positions h = 1.3Λ, 1.2Λ, 1.1Λ, 1.0Λ, 0.9Λ, respectively. Right: Phase match condition for each of the five cases. The imaginary part of neff (green curve) exhibits a peak at the crossing point of th core mode (blue) and the plasmonic mode (red dashed lines). The magenta lines are the real part of the fundamental mode for non-resonance cases.

Fig. 3
Fig. 3

(a) The general shape of fiber SPR sensor based on all-solid PCF. Red line indicates the y-axis. (b) Electric field density along the y-axis. Inset focuses in the region of around leakage channel. (c) The fitted result of the maximum surface electric fields (Emax) with respect to the height of the polishing plane. (d) The loss of fiber SPR sensors with different polishing depths are presented. We prefer fiber sensor with h = 1.1Λ for the experimental investigation.

Fig. 4
Fig. 4

(a) The phase difference of two modes Φd under different conditions. (b) Enlarged drawing for the resonance region in (a). Vertical lines represent the wavelengths of the incident light for a wavelength multiplex scheme. Different colors represent different wavelengths. (c) The phase shift for incident light wavelengths as ne changes. (d) The solid curves present the sensitivities and the dashed curves show the corresponding loss properties. The heavy lines highlight the results from the dashed black boxes in (c).

Fig. 5
Fig. 5

(a) The phase difference curves for a range of different polishing depths. Different colors represent different polishing depths, while different marker types represent different values for the environmental refractive indices ne = 1.333 – 1.345. (b) The resonance wavelength λres(1.339) for different polishing depths. (c) The phase shift curves as ne increases. (d) The sensitivity for different polishing depths and the fitted result.

Fig. 6
Fig. 6

Fiber structural parameters and their influence in sensor performance. The left side displays the impact of the pitch on the sensitivity, and the right side for the cladding rod radius. The structural variants are plotted in different color, while different marker types represent different ne. The top row is the phase difference curves, the second row shows the phase shift for different ne. The sensitivities are plotted in the third row. The fourth and bottom rows present the electric field along the y-axis and the corresponding fitted results. The red circle in (g) highlight the protrusion of the wave vector under small pitch condition Λ = 1.4μm.

Fig. 7
Fig. 7

(a) The cross section of D-shaped step fiber sensor. The environmental refractive index is ne = 1.339 for comparison. (b) The evanescent field along the y-axis. The solid line represents fiber sensors based on PCF, while the dashed line represents fiber sensor based on step fiber. Different color corresponds to different depths. (c) Comparison of the maximum surface field (logarithmic axes). (d) The corresponding phase difference curves and sensitivities for ne = 1.339 RIU and polishing depth h = 1.1 Λ.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( r , t ) = Re ( E ˜ ( r ) e ζ z + i ω t ) = Re ( E ˜ ( r ) e k 0 Im ( n eff ) z i k 0 Re ( n eff ) z + i ω t
I out = E E * = I p + I s + 2 I p I s cos ( ω 0 t + θ ) I D C + 2 ( 1 2 k p I p 0 ) ( 1 2 k s I s 0 ) cos ( ω t + θ ) I D C + k p I 0 cos ( ω t + θ )
Φ d = 2 π λ ( Re ( n p ) Re ( n s ) ) L
S = a 1 exp ( b 1 x ) E max = a 2 exp ( b 2 x )
S = a 2 a 1 ( b 1 / b 2 ) E max ( b 1 / b 2 )
Γ = E d S Γ ( E max )
structural variable Γ ( E max ) sensitivity

Metrics