Abstract

We realize a strongly dispersive material with large tunable group velocity dispersion (GVD) in a commercially-available photonic crystal fiber. Specifically, we pump the fiber with a two-frequency pump field that induces an absorbing resonance adjacent to an amplifying resonance via the stimulated Brillouin processes. We demonstrate all-optical control of the GVD by measuring the linear frequency chirp impressed on a 28-nanosecond-duration optical pulse by the medium and find that it is tunable over the range ± 7.8 ns2/m. The maximum observed value of the GVD is 109 times larger than that in a typical single-mode silica optical fiber. Our observations are in good agreement with a theoretical model of the process.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. R. W. Boyd and D. J. Gauthier, “Controlling the Velocity of Light Pulses,” Science 326(5956), 1074–1077 (2009).
    [CrossRef] [PubMed]
  3. A. M. Weiner, Ultrafast optics (John Wiley and Sons, New Jersey, 2009).
  4. J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87(6), 062322 (2013).
    [CrossRef]
  5. J. Nunn, L. J. Wright, C. Söller, L. I. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21(13), 15959–15973 (2013).
    [CrossRef] [PubMed]
  6. J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent Ultrafast Measurement of Time-Bin Encoded Photons,” Phys. Rev. Lett. 111(15), 153602 (2013).
    [CrossRef] [PubMed]
  7. J. P. Yao, “A tutorial on microwave photonics - Part I,” IEEE Photon. Soc. Newsletter 26, 4–12 (2012).
  8. P. Bowlan and R. Trebino, “Complete single-shot measurement of arbitrary nanosecond laser pulses in time,” Opt. Express 19(2), 1367–1377 (2011).
    [CrossRef] [PubMed]
  9. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
    [CrossRef] [PubMed]
  10. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  11. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [CrossRef] [PubMed]
  12. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
    [CrossRef] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, San Diego, 2001), Chs. 1–4.
  14. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13(25), 9995–10002 (2005).
    [CrossRef] [PubMed]
  15. Y. Wu, L. Zhan, Y. Wang, S. Luo, and Y. Xia, “Low distortion pulse delay using SBS slow- and fast-light propagation in cascaded optical fibers,” J. Opt. Soc. Am. B 28(11), 2605–2610 (2011).
    [CrossRef]
  16. R. W. Boyd, Nonlinear Optics, 3rd Ed. (Academic Press, Amsterdam, 2008), Ch. 9.
  17. M. Born and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University, Cambridge, 2002), Ch. II.
  18. Y. Zhu, M. Lee, M. A. Neifeld, and D. J. Gauthier, “High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation,” Opt. Express 19(2), 687–697 (2011).
    [CrossRef] [PubMed]
  19. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25(1), 201–206 (2007).
    [CrossRef]
  20. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32(3), 217–219 (2007).
    [CrossRef] [PubMed]
  21. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19(9), 8285–8290 (2011).
    [CrossRef] [PubMed]
  22. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
    [CrossRef] [PubMed]
  23. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
    [CrossRef] [PubMed]
  24. Y. Zhu, J. Kim, and D. J. Gauthier, “Aberration-corrected quantum temporal imaging,” Phys. Rev. A 87(4), 043808 (2013).
    [CrossRef]
  25. M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum Optomechanics,” Phys. Today 65(7), 29–35 (2012).
    [CrossRef]
  26. J. A. Greenberg and D. J. Gauthier, “Transient dynamics and momentum redistribution in cold atoms via recoil-induced resonances,” Phys. Rev. A 79(3), 033414 (2009).
    [CrossRef]
  27. S. P. Shipman and S. Venakides, “Resonant transmission near nonrobust periodic slab modes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026611 (2005).
    [CrossRef] [PubMed]
  28. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
    [CrossRef] [PubMed]
  29. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [CrossRef] [PubMed]

2013 (7)

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87(6), 062322 (2013).
[CrossRef]

J. Nunn, L. J. Wright, C. Söller, L. I. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21(13), 15959–15973 (2013).
[CrossRef] [PubMed]

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent Ultrafast Measurement of Time-Bin Encoded Photons,” Phys. Rev. Lett. 111(15), 153602 (2013).
[CrossRef] [PubMed]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

Y. Zhu, J. Kim, and D. J. Gauthier, “Aberration-corrected quantum temporal imaging,” Phys. Rev. A 87(4), 043808 (2013).
[CrossRef]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

2012 (3)

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum Optomechanics,” Phys. Today 65(7), 29–35 (2012).
[CrossRef]

J. P. Yao, “A tutorial on microwave photonics - Part I,” IEEE Photon. Soc. Newsletter 26, 4–12 (2012).

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

2011 (5)

2009 (2)

J. A. Greenberg and D. J. Gauthier, “Transient dynamics and momentum redistribution in cold atoms via recoil-induced resonances,” Phys. Rev. A 79(3), 033414 (2009).
[CrossRef]

R. W. Boyd and D. J. Gauthier, “Controlling the Velocity of Light Pulses,” Science 326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

2005 (4)

S. P. Shipman and S. Venakides, “Resonant transmission near nonrobust periodic slab modes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026611 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13(25), 9995–10002 (2005).
[CrossRef] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Agnew, M.

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent Ultrafast Measurement of Time-Bin Encoded Photons,” Phys. Rev. Lett. 111(15), 153602 (2013).
[CrossRef] [PubMed]

Alici, K. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Al-Naib, I. A. I.

Arju, N.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum Optomechanics,” Phys. Today 65(7), 29–35 (2012).
[CrossRef]

Bahl, G.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Bowlan, P.

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Controlling the Velocity of Light Pulses,” Science 326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Carmon, T.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

Choi, D.-Y.

Cox, J. A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Dawes, A. M. C.

Desjardins, P.

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87(6), 062322 (2013).
[CrossRef]

Donohue, J. M.

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent Ultrafast Measurement of Time-Bin Encoded Photons,” Phys. Rev. Lett. 111(15), 153602 (2013).
[CrossRef] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Eggleton, B. J.

Englund, D.

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87(6), 062322 (2013).
[CrossRef]

Fan, X.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

Farsi, A.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

Fozdar, D. Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Fridman, M.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

Gaeta, A. L.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Zhu, J. Kim, and D. J. Gauthier, “Aberration-corrected quantum temporal imaging,” Phys. Rev. A 87(4), 043808 (2013).
[CrossRef]

Y. Zhu, M. Lee, M. A. Neifeld, and D. J. Gauthier, “High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation,” Opt. Express 19(2), 687–697 (2011).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, “Controlling the Velocity of Light Pulses,” Science 326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

J. A. Greenberg and D. J. Gauthier, “Transient dynamics and momentum redistribution in cold atoms via recoil-induced resonances,” Phys. Rev. A 79(3), 033414 (2009).
[CrossRef]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25(1), 201–206 (2007).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13(25), 9995–10002 (2005).
[CrossRef] [PubMed]

Greenberg, J. A.

J. A. Greenberg and D. J. Gauthier, “Transient dynamics and momentum redistribution in cold atoms via recoil-induced resonances,” Phys. Rev. A 79(3), 033414 (2009).
[CrossRef]

Hao, Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Herráez, M. G.

Hile, S.

Hotate, K.

Jarecki, R.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Khanikaev, A. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Kholmanov, I.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Kim, J.

Y. Zhu, J. Kim, and D. J. Gauthier, “Aberration-corrected quantum temporal imaging,” Phys. Rev. A 87(4), 043808 (2013).
[CrossRef]

Kim, K. H.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

Koch, M.

Lavoie, J.

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent Ultrafast Measurement of Time-Bin Encoded Photons,” Phys. Rev. Lett. 111(15), 153602 (2013).
[CrossRef] [PubMed]

Lee, C.

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87(6), 062322 (2013).
[CrossRef]

Lee, M.

Lee, W.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

Li, E.

Liu, J.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

Luo, S.

Luther-Davies, B.

Madden, S. J.

Mcfarlane, H.

Meystre, P.

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum Optomechanics,” Phys. Today 65(7), 29–35 (2012).
[CrossRef]

Mousavi, S. H.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Mower, J.

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87(6), 062322 (2013).
[CrossRef]

Neifeld, M. A.

Nunn, J.

Okawachi, Y.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Olsson, R. H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Pant, R.

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Poulton, C. G.

Purtseladze, D.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Qiu, W.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Rakich, P. T.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Resch, K. J.

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent Ultrafast Measurement of Time-Bin Encoded Photons,” Phys. Rev. Lett. 111(15), 153602 (2013).
[CrossRef] [PubMed]

Ruoff, R. S.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Schwab, K.

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum Optomechanics,” Phys. Today 65(7), 29–35 (2012).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Shapiro, J. H.

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87(6), 062322 (2013).
[CrossRef]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Shin, H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Shipman, S. P.

S. P. Shipman and S. Venakides, “Resonant transmission near nonrobust periodic slab modes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026611 (2005).
[CrossRef] [PubMed]

Shvets, G.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Singh, R.

Smith, B. J.

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Söller, C.

Song, K. Y.

Starbuck, A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Stenner, M. D.

Suk, J. W.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Tatar, K.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Thevenaz, L.

Thévenaz, L.

Trebino, R.

Venakides, S.

S. P. Shipman and S. Venakides, “Resonant transmission near nonrobust periodic slab modes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026611 (2005).
[CrossRef] [PubMed]

Walmsley, I. A.

Wang, Y.

Wang, Z.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Willner, A. E.

Wright, L. J.

Wu, Y.

Xia, Y.

Yao, J. P.

J. P. Yao, “A tutorial on microwave photonics - Part I,” IEEE Photon. Soc. Newsletter 26, 4–12 (2012).

Zhan, L.

Zhang, L.

Zhang, L. I.

Zhang, W.

Zhang, Z.

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87(6), 062322 (2013).
[CrossRef]

Zhu, Y.

Zhu, Z.

IEEE Photon. Soc. Newsletter (1)

J. P. Yao, “A tutorial on microwave photonics - Part I,” IEEE Photon. Soc. Newsletter 26, 4–12 (2012).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[CrossRef] [PubMed]

Nat. Commun. (2)

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

Nature (2)

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. A (3)

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87(6), 062322 (2013).
[CrossRef]

Y. Zhu, J. Kim, and D. J. Gauthier, “Aberration-corrected quantum temporal imaging,” Phys. Rev. A 87(4), 043808 (2013).
[CrossRef]

J. A. Greenberg and D. J. Gauthier, “Transient dynamics and momentum redistribution in cold atoms via recoil-induced resonances,” Phys. Rev. A 79(3), 033414 (2009).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. P. Shipman and S. Venakides, “Resonant transmission near nonrobust periodic slab modes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026611 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent Ultrafast Measurement of Time-Bin Encoded Photons,” Phys. Rev. Lett. 111(15), 153602 (2013).
[CrossRef] [PubMed]

Phys. Today (1)

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum Optomechanics,” Phys. Today 65(7), 29–35 (2012).
[CrossRef]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, “Controlling the Velocity of Light Pulses,” Science 326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

Other (4)

A. M. Weiner, Ultrafast optics (John Wiley and Sons, New Jersey, 2009).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, San Diego, 2001), Chs. 1–4.

R. W. Boyd, Nonlinear Optics, 3rd Ed. (Academic Press, Amsterdam, 2008), Ch. 9.

M. Born and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University, Cambridge, 2002), Ch. II.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Group velocity dispersion in optical material. a An input transform-limited optical pulse develops a linear frequency chirp as it propagates through a material with group velocity dispersion parameter β2 (illustrated here for the case when β2 > 0). b Wavevector magnitude for a medium containing oscillators with a double resonance described by the susceptibility given by Eq. (3) with Δ / γ = 1.03 . c GVD parameter for the double-resonance medium for the same conditions as in b.

Fig. 2
Fig. 2

Schematic of the experimental setup to observe giant GVD. We use a 10-m-long PCF (NKT Photonics Inc., NL-1550-NEG-1, SBS gain factor gSBS = 2.5 ± 0.2 W−1m−1, SBS resonance width γ/2π = 23.8 ± 0.6 MHz, and Brillouin frequency ΩB/2π = 9.60 GHz) that is pumped by a 1.55-μm-wavelength bichromatic pump beam. The pump beam is created by modulating the output of a telecommunications laser (Fitel 47X97A04) with a Mach-Zehnder modulator (EOSpace, AX-0K1-12-PFAP-PFA-R3-UL, 20 GHz) operating in carrier-suppression mode and driven by a sinusoidal waveform at frequency produced by a microwave frequency source (Agilent E8267D). The modulated pump beam is passed through an erbium-doped fiber amplifier (IPG Photonics EAD-1K) and a Faraday circulator before injection into the PCF so that it counterpropagates with respect to the signal beam. It is noted that such an experiment setting is not mandatory to realize giant GVD; we can also use two laser diodes as the dual-frequency pump given that the frequency jitter is small and stable.

Fig. 3
Fig. 3

Composite SBS resonance. a Illustration of SBS resonances. A counterpropagating pump beam of frequency induces an anti-Stokes absorption line at frequency ω p 1 + Ω B and full-width at half-maximum width 2 γ , and the pump beam component at frequency ω p 2 induces a Stokes gain line at frequency ω p 2 Ω B , also with the same width. These induced resonances are shown in red. The strength of the resonances are identical in magnitude and given by G = g S B S P p j , where g S B S is the SBS gain factor and P p j is the pump power of the pump beam at frequency j ( = 1, 2). The center of the composite SBS resonance is at frequency ω r and the frequency relative to this value is denoted by δ. The spacing between the gain and absorption lines is , shown here for the case when Δ > 0. b Experimentally observed probe beam transmission profile for different values of Δ, showing the natural logarithm of the output probe beam power Pout divided by the input power Pin with G L = 0.33 ± 0.03 .

Fig. 4
Fig. 4

Observation of giant GVD in a laser-pumped optical fiber. a Temporal evolution of the power at the output port Pout(t) of the homodyne detection setup normalized to its peak power ((Pout)max) for GL = 2.0 ± 0.08. When the reference beam is blocked (solid line, top), we observe the pulse profile. With the reference beam (solid line, bottom), we observe a complex pattern resulting from both the pulse profile and the temporal phase variation resulting from the GVD-induced chirp. The solid dots are a fit to the data (see text). b Linear variation of the GVD parameter with SBS gain, which is proportional to the power of the pump laser. The error bar shows the typical error in our measurement.

Fig. 5
Fig. 5

Parameters for an optical pulse propagating through a dual-line dispersive material. a Pulse width, b temporal offset, and c amplification as a function of the SBS gain. Here, amplification is defined at the peak power of the output probe pulse divided by the peak power of the pulse in the absence of the pump beams (i.e., with G = 0). The solid lines are the prediction of the second-order theory, the dashed lines are the predication of the full model using numerical techniques, and the solid circles are the experimental measurements, where the error bars indicate typical measurement error. In c, the typical error bar is of the order of the size of the symbol.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E out (ω)= e iβ(ω)z E in (ω)
β(ω)= β 0 ( ω 0 )+ β 1 (ω ω 0 )+ β 2 (ω ω 0 ) 2 /2!+ β 3 (ω ω 0 ) 3 /3!+
χ(ω)=i c n h G ω r [ 1 1i(δ+Δ)/γ + 1 1i(δΔ)/γ ].
β 2 = G γ 2 ( 2 Δ ˜ (3+ Δ ˜ 2 ) (1+ Δ ˜ 2 ) 3 ),
A( z=0,t )= A 0 exp[ ( t/ τ 0 ) 2 ].
τ 2 = τ 0 2 (1+ L 2 / L D 2 ),
ω(T)= ω 0 ϕ T ,
ϕ T = sgn( β 2 )L L D τ 2 T Im( β 1 )L τ 2 ,
Im( β 1 )= G 2γ [ 4 Δ ˜ ( 1+ Δ ˜ 2 ) 2 ].
T off = sgn( β 2 )Im( β 1 ) L 2 L D ,
P out P in = ( τ 0 τ ) 2 exp[ ( Im( β 1 )L ) 2 τ 0 2 ].

Metrics