Abstract

A novel type of integrated refractive-diffractive varifocal membrane lens is designed and analyzed by wave-optical methods. In contrast to other hybrid devices, the diffractive microstructure is directly imprinted onto the soft deflecting membrane, allowing for a high level of integration. Elastic deformation is taken into account by mechanical simulations with the finite element method (FEM). We show, that the superimposed structure can considerably suppress chromatic and spherical aberration. Furthermore, our algorithm is successfully applied to design a confocal hyperspectral lens.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Sugiura, S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32, 4181–4186 (1993).
    [CrossRef] [PubMed]
  2. A. H. Rawicz, I. Mikhailenko, “Modeling a variable-focus liquid-filled optical lens,” Appl. Opt. 35, 1587–1589 (1996).
    [CrossRef] [PubMed]
  3. D.-Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004).
    [CrossRef] [PubMed]
  4. A. Werber, H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44, 3238–3245 (2005).
    [CrossRef] [PubMed]
  5. S. Leopold, T. Polster, D. Paetz, F. Knoebber, O. Ambacher, S. Sinzinger, M. Hoffmann, “MOEMS tunable microlens made of aluminum nitride membranes,” J. Micro/Nanolith. MEMS MOEMS 12,023012 (2013).
    [CrossRef]
  6. M. Blum, M. Beler, C. Graetzel, M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” in Proceedings of SPIE Optical Design and Engineering IV, Vol. 8167 (2011).
    [CrossRef]
  7. S. Reichelt, H. Zappe, “Design of spherically corrected achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007).
    [CrossRef] [PubMed]
  8. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, A. Seifert, “Chromatic aberration control for tunable all-silicon membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
    [CrossRef] [PubMed]
  9. G. Zhou, H. M. Leung, H. Yu, A. S. Kumar, F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34, 2793–2795 (2009).
    [CrossRef] [PubMed]
  10. P. Valley, N. Savidis, J. Schwiegerling, M. Dodge, G. Peyman, N. Peyghambarian, “Adjustable hybrid diffractive/refractive achromatic lens,” Opt. Express 19, 7468–7479 (2011).
    [CrossRef] [PubMed]
  11. P.-H. Cu-Nguyen, A. Grewe, M. Hillenbrand, S. Sinzinger, A. Seifert, H. Zappe, “Tunable hyperchromatic lens system for confocal hyperspectral sensing,” Opt. Express 21, 27611–27621 (2013).
    [CrossRef]
  12. N. Weber, H. Zappe, A. Seifert, “A tunable optofluidic silicon optical bench,” J. Microelectromech. Syst. 21, 1357–1364 (2012).
    [CrossRef]
  13. Q. Y. Duan, V. K. Gupta, S. Sorooshian, “Shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76, 501–521 (1993).
    [CrossRef]

2013 (2)

S. Leopold, T. Polster, D. Paetz, F. Knoebber, O. Ambacher, S. Sinzinger, M. Hoffmann, “MOEMS tunable microlens made of aluminum nitride membranes,” J. Micro/Nanolith. MEMS MOEMS 12,023012 (2013).
[CrossRef]

P.-H. Cu-Nguyen, A. Grewe, M. Hillenbrand, S. Sinzinger, A. Seifert, H. Zappe, “Tunable hyperchromatic lens system for confocal hyperspectral sensing,” Opt. Express 21, 27611–27621 (2013).
[CrossRef]

2012 (1)

N. Weber, H. Zappe, A. Seifert, “A tunable optofluidic silicon optical bench,” J. Microelectromech. Syst. 21, 1357–1364 (2012).
[CrossRef]

2011 (3)

2009 (1)

2007 (1)

2005 (1)

2004 (1)

1996 (1)

1993 (2)

N. Sugiura, S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32, 4181–4186 (1993).
[CrossRef] [PubMed]

Q. Y. Duan, V. K. Gupta, S. Sorooshian, “Shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76, 501–521 (1993).
[CrossRef]

Ambacher, O.

S. Leopold, T. Polster, D. Paetz, F. Knoebber, O. Ambacher, S. Sinzinger, M. Hoffmann, “MOEMS tunable microlens made of aluminum nitride membranes,” J. Micro/Nanolith. MEMS MOEMS 12,023012 (2013).
[CrossRef]

Aschwanden, M.

M. Blum, M. Beler, C. Graetzel, M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” in Proceedings of SPIE Optical Design and Engineering IV, Vol. 8167 (2011).
[CrossRef]

Beler, M.

M. Blum, M. Beler, C. Graetzel, M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” in Proceedings of SPIE Optical Design and Engineering IV, Vol. 8167 (2011).
[CrossRef]

Berdichevsky, Y.

Blum, M.

M. Blum, M. Beler, C. Graetzel, M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” in Proceedings of SPIE Optical Design and Engineering IV, Vol. 8167 (2011).
[CrossRef]

Chau, F. S.

Cu-Nguyen, P.-H.

Dodge, M.

Duan, Q. Y.

Q. Y. Duan, V. K. Gupta, S. Sorooshian, “Shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76, 501–521 (1993).
[CrossRef]

Graetzel, C.

M. Blum, M. Beler, C. Graetzel, M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” in Proceedings of SPIE Optical Design and Engineering IV, Vol. 8167 (2011).
[CrossRef]

Grewe, A.

Gupta, V. K.

Q. Y. Duan, V. K. Gupta, S. Sorooshian, “Shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76, 501–521 (1993).
[CrossRef]

Hillenbrand, M.

Hoffmann, M.

S. Leopold, T. Polster, D. Paetz, F. Knoebber, O. Ambacher, S. Sinzinger, M. Hoffmann, “MOEMS tunable microlens made of aluminum nitride membranes,” J. Micro/Nanolith. MEMS MOEMS 12,023012 (2013).
[CrossRef]

Justis, N.

Knoebber, F.

S. Leopold, T. Polster, D. Paetz, F. Knoebber, O. Ambacher, S. Sinzinger, M. Hoffmann, “MOEMS tunable microlens made of aluminum nitride membranes,” J. Micro/Nanolith. MEMS MOEMS 12,023012 (2013).
[CrossRef]

Kumar, A. S.

Leopold, S.

S. Leopold, T. Polster, D. Paetz, F. Knoebber, O. Ambacher, S. Sinzinger, M. Hoffmann, “MOEMS tunable microlens made of aluminum nitride membranes,” J. Micro/Nanolith. MEMS MOEMS 12,023012 (2013).
[CrossRef]

Leung, H. M.

Liebetraut, P.

Lien, V.

Lo, Y.-H.

Mader, D.

Mikhailenko, I.

Morita, S.

Paetz, D.

S. Leopold, T. Polster, D. Paetz, F. Knoebber, O. Ambacher, S. Sinzinger, M. Hoffmann, “MOEMS tunable microlens made of aluminum nitride membranes,” J. Micro/Nanolith. MEMS MOEMS 12,023012 (2013).
[CrossRef]

Peyghambarian, N.

Peyman, G.

Polster, T.

S. Leopold, T. Polster, D. Paetz, F. Knoebber, O. Ambacher, S. Sinzinger, M. Hoffmann, “MOEMS tunable microlens made of aluminum nitride membranes,” J. Micro/Nanolith. MEMS MOEMS 12,023012 (2013).
[CrossRef]

Rawicz, A. H.

Reichelt, S.

Savidis, N.

Schwiegerling, J.

Seifert, A.

Sinzinger, S.

S. Leopold, T. Polster, D. Paetz, F. Knoebber, O. Ambacher, S. Sinzinger, M. Hoffmann, “MOEMS tunable microlens made of aluminum nitride membranes,” J. Micro/Nanolith. MEMS MOEMS 12,023012 (2013).
[CrossRef]

P.-H. Cu-Nguyen, A. Grewe, M. Hillenbrand, S. Sinzinger, A. Seifert, H. Zappe, “Tunable hyperchromatic lens system for confocal hyperspectral sensing,” Opt. Express 21, 27611–27621 (2013).
[CrossRef]

Sorooshian, S.

Q. Y. Duan, V. K. Gupta, S. Sorooshian, “Shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76, 501–521 (1993).
[CrossRef]

Sugiura, N.

Valley, P.

Waibel, P.

Weber, N.

N. Weber, H. Zappe, A. Seifert, “A tunable optofluidic silicon optical bench,” J. Microelectromech. Syst. 21, 1357–1364 (2012).
[CrossRef]

Werber, A.

Yu, H.

Zappe, H.

Zhang, D.-Y.

Zhou, G.

Appl. Opt. (4)

J. Micro/Nanolith. MEMS MOEMS (1)

S. Leopold, T. Polster, D. Paetz, F. Knoebber, O. Ambacher, S. Sinzinger, M. Hoffmann, “MOEMS tunable microlens made of aluminum nitride membranes,” J. Micro/Nanolith. MEMS MOEMS 12,023012 (2013).
[CrossRef]

J. Microelectromech. Syst. (1)

N. Weber, H. Zappe, A. Seifert, “A tunable optofluidic silicon optical bench,” J. Microelectromech. Syst. 21, 1357–1364 (2012).
[CrossRef]

J. Optim. Theory Appl. (1)

Q. Y. Duan, V. K. Gupta, S. Sorooshian, “Shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76, 501–521 (1993).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Proceedings of SPIE Optical Design and Engineering IV (1)

M. Blum, M. Beler, C. Graetzel, M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” in Proceedings of SPIE Optical Design and Engineering IV, Vol. 8167 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) FEM configuration and deformed mesh at a pressure of 5 kPa. (b) Simulated membrane shapes for a pressure range of −0.5 – 8 kPa. (c) Deflected membrane at p = 8 kPa, visualizing the distribution of radial strain.

Fig. 2
Fig. 2

(a) Geometric representation of the Huygens-Fresnel method used. (b) Comparison of the Huygens-Fresnel-method with 3D Gaussian beam calculations. The intensity distribution on the optical axis results from a 4th order asphere lens at z = 0 with plane wave illumination.

Fig. 3
Fig. 3

(a) Example of a relief function hr(r). (b) Surface function z(r) as the superposition of the relief hr(r) and the smooth membrane function hs(r) at a pressure of 5 kPa.

Fig. 4
Fig. 4

(a) Comparison of the designed DOE with the distorted and radially elongated structure after membrane deflection. (b) Normalized intensities along the optical axis for three different membrane pressures at a wavelength of 535 nm for both cases, compared with a purely refractive unstructured membrane.

Fig. 5
Fig. 5

2D cross sections through the focal spot for different focal lengths at a wavelength of 535 nm and corresponding line scans along the optical axis.

Fig. 6
Fig. 6

Irradiance distributions and corresponding line scans in the focal plane for different focal lengths at a wavelength of 535 nm. All plots are scaled to their individual maximum.

Fig. 7
Fig. 7

Focal shift as a function of wavelength λ, relative to the focal length at λ = 535 nm and diffraction efficiency as a function of wavelength for the achromatic case. Since the DOE introduces an offset in focal length, the absolute focal length of the purely refractive lens is slightly higher at the same pressure.

Fig. 8
Fig. 8

(a) Irradiance distribution on the optical axis for different wavelengths (420 nm – 650 nm) and a membrane pressure of −0.5 kPa. (b) Schematic of the investigated setup. (c) Transmission spectra of the system as a function of lens pressure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U ( P 0 ) = i λ U 0 k = 1 n K ( χ k ) d k exp [ i ( 2 π ( n 1 d k + n 2 z ( r k ) ) λ ) ] r k Δ r ,
K ( χ k ) = 1 + cos ( χ k ) 2 ,
h s ( r ) = a 3 ( p ) r 6 + a 2 ( p ) r 4 + a 1 ( p ) r 2 + a 0 ( p ) .
h r ( r ) = ( b n r 2 n + b n 1 r 2 ( n 1 ) + + b 1 r 2 ) mod ( λ 0 n 2 ( λ 0 n 1 ( λ 0 ) ) ,

Metrics