Abstract

A novel light luminaire is proposed and experimentally analyzed, which accurately projects light into a large rectangular area to achieve uniform illumination and a high optical utilization factor at the target. Side-illuminating luminaires for large-scale illuminated area are typically set with an elevated tilt angle to enlarge the illuminated area. However, the light pattern is bent thereby reducing the uniformity and optical utilization factor at the target. In this paper, we propose an efficient and useful approach with a rotationally symmetric projection lens that is trimmed to adjust the bending effect and to form a rectangular illumination light pattern on the ground. The design concept is demonstrated and verified. Several potential applications such as highly uniform illumination with fitting shapes for sport courts are analyzed and discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
    [CrossRef]
  2. A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting, (John Wiley & Sons, 2002).
  3. F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
    [CrossRef]
  4. X. H. Lee, I. Moreno, and C. C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express 21(9), 10612–10621 (2013).
    [CrossRef] [PubMed]
  5. H. Ries and J. A. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19(3), 590–595 (2002).
    [CrossRef] [PubMed]
  6. X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with a surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol. 49, 153–155 (2013).
    [CrossRef]
  7. Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab. 52(5), 889–893 (2012).
    [CrossRef]
  8. Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18(9), 9055–9063 (2010).
    [CrossRef] [PubMed]
  9. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
    [CrossRef] [PubMed]
  10. L. Wang, K. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46(18), 3716–3723 (2007).
    [CrossRef] [PubMed]
  11. R. Winston, J. C. Miñano, and P. Benítez, NonimagingOptics, (Elsevier, 2005).
  12. P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
    [CrossRef]
  13. X. H. Lee, I. Moreno, and C. C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express 21(9), 10612–10621 (2013).
    [CrossRef] [PubMed]
  14. CREE, http://www.cree.com/led-components-and-modules/products/xlamp/discrete-directional/xlamp-xml .
  15. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31(14), 2193–2195 (2006).
    [CrossRef] [PubMed]
  16. W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15(12), 7572–7577 (2007).
    [CrossRef] [PubMed]
  17. C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17(16), 13918–13927 (2009).
    [CrossRef] [PubMed]
  18. ASAP, http://www.bro.com/ .
  19. DIALux, http://www.dial.de/DIAL/ .
  20. CNS 12112 standard, http://www.pws.stu.edu.tw/paul/lecture/e207-1.pdf .

2013

2012

Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab. 52(5), 889–893 (2012).
[CrossRef]

2010

2009

2008

2007

2006

2005

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[CrossRef]

2004

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

2002

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

H. Ries and J. A. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19(3), 590–595 (2002).
[CrossRef] [PubMed]

Benítez, P.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Bhat, J. C.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Blen, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Chaves, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Chien, W. T.

Collins, D.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Ding, Y.

Dross, O.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Falicoff, W.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Feng, Z.

Fletcher, R. M.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Gu, P. F.

Han, Y.

Hernández, M.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Holcomb, M. O.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Hsieh, C. C.

Huang, K. T.

Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab. 52(5), 889–893 (2012).
[CrossRef]

Huang, S. M.

Laski, J.

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[CrossRef]

Lee, K. H.

X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with a surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol. 49, 153–155 (2013).
[CrossRef]

Lee, T. X.

Lee, X. H.

X. H. Lee, I. Moreno, and C. C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express 21(9), 10612–10621 (2013).
[CrossRef] [PubMed]

X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with a surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol. 49, 153–155 (2013).
[CrossRef]

X. H. Lee, I. Moreno, and C. C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express 21(9), 10612–10621 (2013).
[CrossRef] [PubMed]

Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab. 52(5), 889–893 (2012).
[CrossRef]

Lee, Y. L.

Li, H.

Liu, X.

Lo, Y. C.

Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab. 52(5), 889–893 (2012).
[CrossRef]

C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17(16), 13918–13927 (2009).
[CrossRef] [PubMed]

Ludowise, M. J.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Luo, Y.

Ma, S. H.

Martin, P. S.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Miñano, J. C.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Mohedano, R.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Moreno, I.

Muschaweck, J. A.

Nguyen, F.

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[CrossRef]

Qian, K.

Ries, H.

Rudaz, S. L.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Steigerwald, D. A.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Sun, C. C.

Terao, B.

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[CrossRef]

Wang, L.

Wu, C. S.

X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with a surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol. 49, 153–155 (2013).
[CrossRef]

Yang, T. H.

X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with a surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol. 49, 153–155 (2013).
[CrossRef]

Zheng, Z. R.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Microelectron. Reliab.

Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab. 52(5), 889–893 (2012).
[CrossRef]

Opt. Eng.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Opt. Express

Opt. Laser Technol.

X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with a surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol. 49, 153–155 (2013).
[CrossRef]

Opt. Lett.

Proc. SPIE

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[CrossRef]

Other

A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting, (John Wiley & Sons, 2002).

ASAP, http://www.bro.com/ .

DIALux, http://www.dial.de/DIAL/ .

CNS 12112 standard, http://www.pws.stu.edu.tw/paul/lecture/e207-1.pdf .

CREE, http://www.cree.com/led-components-and-modules/products/xlamp/discrete-directional/xlamp-xml .

R. Winston, J. C. Miñano, and P. Benítez, NonimagingOptics, (Elsevier, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

(a) direct-illuminating type, (b) bent pattern from side-illuminating type, and (c) adjusted pattern from specific design.

Fig. 2
Fig. 2

The apparatus of the illuminated.

Fig. 3
Fig. 3

CREE XM-L LED: (a) the optical model and (b) a real sample.

Fig. 4
Fig. 4

Angular pattern at different distances in the mid-field region: (a) 1.5cm, (b) 3cm, (c) 5cm, and (d) 7cm.

Fig. 5
Fig. 5

The luminaire contains a lens array and a flat reflector.

Fig. 6
Fig. 6

(a) The uniform pattern from the symmetric freeform lens, (b) the pattern from the lens with the diamond-shaped cutting, (c) the tilted lens array module without a planar mirror and the corresponding light pattern, and (d) the tilted lens array module with a planar mirror on one side and the corresponding light pattern.

Fig. 7
Fig. 7

(a) The trapezoid pattern formed by the flat reflector, (b) the new coordinate axis ( x ' , y ' , z ' ) for the trapezoid pattern, (c) the projective part at x ' - z ' plane, and (d) the projective part at y ' - z ' plane.

Fig. 8
Fig. 8

(a) The array with several luminaires arranged side by side, (b) the pattern with lower loss effect, and (c) the final pattern to meet the target with two luminaires in the opposite side.

Fig. 9
Fig. 9

(a) The prototype by CNC machining, (b) the simulated pattern, and (c) the experimental result.

Fig. 10
Fig. 10

(a) The sampling points at the vertical axis, (b) the sampling points at horizontal axis.

Fig. 11
Fig. 11

The illuminance distribution along (a) the V1 line, (b) the V2 line, (c) the V3 line, (d) the V4 line, and (e) the V5 line.

Fig. 12
Fig. 12

The illuminance distribution along (a) the V1 line, (b) the V2 line, (c) the V3 line, (d) the V4 line, and (e) theV5 line.

Fig. 13
Fig. 13

The dimensions of the badminton court.

Fig. 14
Fig. 14

The analysis for average illuminance and optical uniformity for (a) section A and (b) section B.

Fig. 15
Fig. 15

The simulated scene: (a) top view and (b) 3D view.

Fig. 16
Fig. 16

The dimensions of the volleyball court.

Fig. 17
Fig. 17

The analysis of average illuminance and optical uniformity for section A.

Fig. 18
Fig. 18

The simulated scene of the illumination on the volleyball court: (a) top view and (b) 3D view.

Fig. 19
Fig. 19

The simulated cinestrip: (a) top view and (b) 3D view.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ x y z ] = [ 1 0 0 0 cos θ sin θ 0 sin θ cos θ ] [ x y z H ] + [ 0 0 H ] .
R 1 = [ x r 1 y r 1 z r 1 ] = [ L / 2 d cos θ H sin θ d sin θ H cos θ + H ] ,
R 2 = [ x r 2 y r 2 z r 2 ] = [ L / 2 ( W + d ) cos θ H sin θ ( W + d ) sin θ H cos θ + H ] .
x d 1 = H H + | z r 1 | ( L / 2 ) .
x d 2 = H H + | z r 2 | ( L / 2 ) .
y d 2 = H H + | z r 2 | W cos θ .
θ 1 = cos 1 [ x d 1 x d 2 + x d 2 2 x d 2 ( x d 1 x d 2 ) 2 + y d 2 2 ]
θ 2 = 2 cos 1 [ x d 1 2 x d 1 x d 2 x d 1 ( x d 1 x d 2 ) 2 + y d 2 2 ] .

Metrics