Abstract

This work investigates a polarization-independent and fast response microlens array. This array is composed of a concave polymer microlens array and blue phase liquid crystals (BPLCs). The microlens array can be either positive or negative, depending on the birefringence of the BPLCs. The experimental results show that the microlens array is fast switched between positive and negative focal lengths via controlling the electric fields, and the response time is a few hundred microseconds. Additionally, the focusing efficiency is independent of the polarization of the incident light.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-P. Huang, C.-W. Chen, T.-C. Shen, J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).
    [CrossRef]
  2. Y.-J. Lee, J.-H. Baek, Y. Kim, J. U. Heo, Y.-K. Moon, J. S. Gwag, C.-J. Yu, J.-H. Kim, “Polarizer-free liquid crystal display with electrically switchable microlens array,” Opt. Express 21(1), 129–134 (2013).
    [CrossRef] [PubMed]
  3. C. J. Hsu, C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
    [CrossRef] [PubMed]
  4. K.-C. Lo, J.-D. Wang, C.-R. Lee, T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
    [CrossRef]
  5. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [CrossRef]
  6. Z. He, T. Nose, S. Sato, “Molecular orientations and optical transmission properties of liquid crystal cells with slit-patterned electrodes,” Jpn. J. Appl. Phys. 36(1), 1178–1184 (1997).
    [CrossRef]
  7. C.-H. Lin, Y.-Y. Wang, C.-W. Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals,” Opt. Lett. 36(4), 502–504 (2011).
    [CrossRef] [PubMed]
  8. Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [CrossRef]
  9. H. Ren, Y.-H. Lin, Y.-H. Fan, S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
    [CrossRef]
  10. V. Presnyakov, K. E. Asatryan, T. V. Galstian, A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express 10(17), 865–870 (2002).
    [CrossRef] [PubMed]
  11. M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” Appl. Phys. Lett. 113(5), 053105 (2013).
  12. Y. Choi, J.-H. Park, J.-H. Kim, S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).
  13. Y.-H. Fan, H. Ren, X. Liang, H. Wang, S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
    [CrossRef]
  14. H. Ren, Y.-H. Fan, S.-T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
    [CrossRef] [PubMed]
  15. L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1–6), 157–170 (2000).
    [CrossRef]
  16. Y. Hisakado, H. Kikichi, T. Nagamura, T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. 17(1), 96–98 (2005).
    [CrossRef]
  17. S. Y. Lu, L. C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35(4), 562–564 (2010).
    [CrossRef] [PubMed]
  18. J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
    [CrossRef]
  19. J. Yan, Y. Li, S.-T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
    [CrossRef] [PubMed]
  20. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
    [CrossRef]
  21. K. M. Chen, S. Gauza, H. Xianyu, S. T. Wu, “Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
    [CrossRef]
  22. S. Piazzolla, B. K. Jenkins, “Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,” J. Mod. Opt. 46(15), 2079–2110 (1999).

2013

2012

2011

2010

S. Y. Lu, L. C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35(4), 562–564 (2010).
[CrossRef] [PubMed]

Y.-P. Huang, C.-W. Chen, T.-C. Shen, J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).
[CrossRef]

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

K. M. Chen, S. Gauza, H. Xianyu, S. T. Wu, “Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[CrossRef]

2009

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

2007

K.-C. Lo, J.-D. Wang, C.-R. Lee, T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

2005

H. Ren, Y.-H. Lin, Y.-H. Fan, S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[CrossRef]

Y.-H. Fan, H. Ren, X. Liang, H. Wang, S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

Y. Hisakado, H. Kikichi, T. Nagamura, T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. 17(1), 96–98 (2005).
[CrossRef]

2004

2002

V. Presnyakov, K. E. Asatryan, T. V. Galstian, A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express 10(17), 865–870 (2002).
[CrossRef] [PubMed]

Y. Choi, J.-H. Park, J.-H. Kim, S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).

2000

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1–6), 157–170 (2000).
[CrossRef]

1999

S. Piazzolla, B. K. Jenkins, “Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,” J. Mod. Opt. 46(15), 2079–2110 (1999).

1997

Z. He, T. Nose, S. Sato, “Molecular orientations and optical transmission properties of liquid crystal cells with slit-patterned electrodes,” Jpn. J. Appl. Phys. 36(1), 1178–1184 (1997).
[CrossRef]

1979

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Asatryan, K. E.

Baek, J.-H.

Chen, C.-W.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).
[CrossRef]

Chen, H.-S.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Chen, K. M.

K. M. Chen, S. Gauza, H. Xianyu, S. T. Wu, “Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[CrossRef]

Cheng, H.-C.

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

Chien, L. C.

Choi, Y.

Y. Choi, J.-H. Park, J.-H. Kim, S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).

Commander, L. G.

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1–6), 157–170 (2000).
[CrossRef]

Day, S. E.

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1–6), 157–170 (2000).
[CrossRef]

Fan, Y.-H.

H. Ren, Y.-H. Lin, Y.-H. Fan, S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[CrossRef]

Y.-H. Fan, H. Ren, X. Liang, H. Wang, S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

H. Ren, Y.-H. Fan, S.-T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[CrossRef] [PubMed]

Galstian, T. V.

Gauza, S.

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

K. M. Chen, S. Gauza, H. Xianyu, S. T. Wu, “Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

Ge, Z.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

Gwag, J. S.

He, Z.

Z. He, T. Nose, S. Sato, “Molecular orientations and optical transmission properties of liquid crystal cells with slit-patterned electrodes,” Jpn. J. Appl. Phys. 36(1), 1178–1184 (1997).
[CrossRef]

Heo, J. U.

Hisakado, Y.

Y. Hisakado, H. Kikichi, T. Nagamura, T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. 17(1), 96–98 (2005).
[CrossRef]

Hsieh, C.-W.

Hsu, C. J.

Hsu, H.-K.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Huang, J.-F.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).
[CrossRef]

Huang, Y.-P.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).
[CrossRef]

Jenkins, B. K.

S. Piazzolla, B. K. Jenkins, “Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,” J. Mod. Opt. 46(15), 2079–2110 (1999).

Jiao, M.

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

Kajiyama, T.

Y. Hisakado, H. Kikichi, T. Nagamura, T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. 17(1), 96–98 (2005).
[CrossRef]

Kikichi, H.

Y. Hisakado, H. Kikichi, T. Nagamura, T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. 17(1), 96–98 (2005).
[CrossRef]

Kim, J.-H.

Y.-J. Lee, J.-H. Baek, Y. Kim, J. U. Heo, Y.-K. Moon, J. S. Gwag, C.-J. Yu, J.-H. Kim, “Polarizer-free liquid crystal display with electrically switchable microlens array,” Opt. Express 21(1), 129–134 (2013).
[CrossRef] [PubMed]

Y. Choi, J.-H. Park, J.-H. Kim, S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).

Kim, Y.

Lee, C.-R.

K.-C. Lo, J.-D. Wang, C.-R. Lee, T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

Lee, S. H.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” Appl. Phys. Lett. 113(5), 053105 (2013).

Lee, S.-D.

Y. Choi, J.-H. Park, J.-H. Kim, S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).

Lee, Y.-J.

Li, W.-Y.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Li, Y.

J. Yan, Y. Li, S.-T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[CrossRef] [PubMed]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

Liang, X.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

Lin, C.-H.

Lin, H.-C.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Lin, Y.-H.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

H. Ren, Y.-H. Lin, Y.-H. Fan, S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[CrossRef]

Lo, K.-C.

K.-C. Lo, J.-D. Wang, C.-R. Lee, T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

Lu, S. Y.

Mo, T.-S.

K.-C. Lo, J.-D. Wang, C.-R. Lee, T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

Moon, Y.-K.

Nagamura, T.

Y. Hisakado, H. Kikichi, T. Nagamura, T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. 17(1), 96–98 (2005).
[CrossRef]

Nose, T.

Z. He, T. Nose, S. Sato, “Molecular orientations and optical transmission properties of liquid crystal cells with slit-patterned electrodes,” Jpn. J. Appl. Phys. 36(1), 1178–1184 (1997).
[CrossRef]

Park, J.-H.

Y. Choi, J.-H. Park, J.-H. Kim, S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).

Piazzolla, S.

S. Piazzolla, B. K. Jenkins, “Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,” J. Mod. Opt. 46(15), 2079–2110 (1999).

Presnyakov, V.

Rao, L.

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

Ren, H.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” Appl. Phys. Lett. 113(5), 053105 (2013).

H. Ren, Y.-H. Lin, Y.-H. Fan, S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[CrossRef]

Y.-H. Fan, H. Ren, X. Liang, H. Wang, S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

H. Ren, Y.-H. Fan, S.-T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[CrossRef] [PubMed]

Sato, S.

Z. He, T. Nose, S. Sato, “Molecular orientations and optical transmission properties of liquid crystal cells with slit-patterned electrodes,” Jpn. J. Appl. Phys. 36(1), 1178–1184 (1997).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Selviah, D. R.

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1–6), 157–170 (2000).
[CrossRef]

Shen, T.-C.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).
[CrossRef]

Sheu, C. R.

Tork, A.

Tsou, Y.-S.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Wang, H.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

Wang, J.-D.

K.-C. Lo, J.-D. Wang, C.-R. Lee, T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

Wang, Q.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” Appl. Phys. Lett. 113(5), 053105 (2013).

Wang, Y.-Y.

Wu, S. T.

K. M. Chen, S. Gauza, H. Xianyu, S. T. Wu, “Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[CrossRef]

Wu, S.-T.

J. Yan, Y. Li, S.-T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[CrossRef] [PubMed]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

Y.-H. Fan, H. Ren, X. Liang, H. Wang, S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

H. Ren, Y.-H. Lin, Y.-H. Fan, S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[CrossRef]

H. Ren, Y.-H. Fan, S.-T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[CrossRef] [PubMed]

Xianyu, H.

K. M. Chen, S. Gauza, H. Xianyu, S. T. Wu, “Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

Xu, M.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” Appl. Phys. Lett. 113(5), 053105 (2013).

Yan, J.

J. Yan, Y. Li, S.-T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[CrossRef] [PubMed]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

Yu, C.-J.

Zhou, Z.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” Appl. Phys. Lett. 113(5), 053105 (2013).

Adv. Mater.

Y. Hisakado, H. Kikichi, T. Nagamura, T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. 17(1), 96–98 (2005).
[CrossRef]

Appl. Phys. Lett.

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

H. Ren, Y.-H. Lin, Y.-H. Fan, S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[CrossRef]

M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” Appl. Phys. Lett. 113(5), 053105 (2013).

K.-C. Lo, J.-D. Wang, C.-R. Lee, T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

J. 3D Res.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010).
[CrossRef]

J. Disp. Technol.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

K. M. Chen, S. Gauza, H. Xianyu, S. T. Wu, “Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[CrossRef]

J. Mod. Opt.

S. Piazzolla, B. K. Jenkins, “Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,” J. Mod. Opt. 46(15), 2079–2110 (1999).

Jpn. J. Appl. Phys.

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Z. He, T. Nose, S. Sato, “Molecular orientations and optical transmission properties of liquid crystal cells with slit-patterned electrodes,” Jpn. J. Appl. Phys. 36(1), 1178–1184 (1997).
[CrossRef]

Opt. Commun.

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1–6), 157–170 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

Y. Choi, J.-H. Park, J.-H. Kim, S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic configuration and operating principles of the BPLC microlens array without electric state (left side) and with electric state (right side).

Fig. 2
Fig. 2

The SEM images of the concave-shaped surface relief structure.

Fig. 3
Fig. 3

Experimental setup for measuring the focusing properties of the BPLC microlens array.

Fig. 4
Fig. 4

(a) Polarizing microscopic image of the BPLC microlens array without applied voltage. The focused image of the BPLC microlens array at (b) V = 0, (c) V = 70 V, (d) V = 150 V, respectively.

Fig. 5
Fig. 5

Measured focal length of the BPLC microlens as a function of applied voltage.

Fig. 6
Fig. 6

(a) Measurement of intensity of focused light for single BPLC microlens under applied voltage V = 30 V with various polarization directions of the incident light. (b) and (c) Measurement of response times for the BPLC microlenses (red lines) with the square-wave voltage (blue lines) switched between 0 and 80 V.

Metrics