Abstract

We demonstrated the dual-detectable DNA-CTMA/n-GaN photodiode (DG-PD) for ultraviolet and visible lights. Halogen and UV lamps are employed to recognize the visible and UV wavelength, respectively. The DG-PD under dark condition has a negative-bias shift of current-voltage (I-V) curves by 0.78 V compared to reference diode without DNA. However, the I-V curves move towards positive bias side by 0.75 V and 1.02 V for the halogen- and UV-exposed photodiode, respectively. These cause electrically different polarity and amount for halogen- and UV-induced photocurrents, indicating that the DNA-CTMA on n-GaN is quite effective for recognizing visible and UV lights as a dual-detectable photodiode. The formation and charge transport mechanisms are also discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Muñoz, “(Al,In,Ga)N-based photodetectors. Some materials issues,” Phys. Status Solidi, B Basic Res. 244(8), 2859–2877 (2007).
    [CrossRef]
  2. T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [CrossRef]
  3. X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
    [CrossRef]
  4. J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, B. D. Weaver, “Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” Appl. Phys. Lett. 94(17), 171102 (2009).
    [CrossRef]
  5. E. H. Steenbergen, M. J. DiNezza, W. H. G. Dettlaff, S. H. Lim, Y.-H. Zhang, “Optically-addressed two-terminal multicolor photodetector,” Appl. Phys. Lett. 97(16), 161111 (2010).
    [CrossRef]
  6. Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
    [CrossRef] [PubMed]
  7. D. Porath, A. Bezryadin, S. de Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
    [CrossRef] [PubMed]
  8. B. H. Mahmoud, C. L. Hexsel, I. H. Hamzavi, H. W. Lim, “Effects of visible light on the skin,” Photochem. Photobiol. 84(2), 450–462 (2008).
    [CrossRef] [PubMed]
  9. S. Delaney, J. K. Barton, “Long-range DNA charge transport,” J. Org. Chem. 68(17), 6475–6483 (2003).
    [CrossRef] [PubMed]
  10. J.-S. Jang, “High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN-GaN superlattice,” Appl. Phys. Lett. 93(8), 081118 (2008).
    [CrossRef]
  11. M.-L. Lee, T. S. Mue, F. W. Huang, J. H. Yang, J. K. Sheu, “High-performance GaN metal-insulator-semiconductor ultraviolet photodetectors using gallium oxide as gate layer,” Opt. Express 19(13), 12658–12663 (2011).
    [CrossRef] [PubMed]
  12. J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
    [CrossRef]
  13. S.-M. Kim, Y.-M. Yu, J.-H. Baek, S.-R. Jeon, H.-J. Ahn, J.-S. Jang, “Plasma-induced damage influence on the n-contact properties and device performance of ultraviolet InGaN/AlGaN light-emitting diodes,” J. Electrochem. Soc. 154(5), H384–H388 (2007).
    [CrossRef]
  14. J.-S. Jang, T.-Y. Seong, “Mechanisms for the reduction of the Schottky barrier heights of high-quality nonalloyed Pt contacts on surface-treated p-GaN,” J. Appl. Phys. 88(5), 3064–3066 (2000).
    [CrossRef]
  15. http://www.sigmaaldrich.com
  16. R. K. Gupta, A. A. Al-Ghamdi, O. Al-Hartomy, H. Hasar, F. El-Tantawy, F. Yakuphanoglu, “Series resistance controlling photosensor of Ag/DNA/p-Si/Al diode,” Synth. Met. 162(11–12), 981–987 (2012).
    [CrossRef]
  17. C. H. Wohlgamuth, M. A. McWilliams, J. D. Slinker, “DNA as a molecular wire: Distance and sequence dependence,” Anal. Chem. 85(18), 8634–8640 (2013).
    [CrossRef] [PubMed]
  18. R. A. Marcus, N. Sutin, “Electron transfers in chemistry and biology,” Biochim. Biophys. Acta 811(3), 265–322 (1985).
    [CrossRef] [PubMed]
  19. M. Bixon, J. Jortner, “Long-range and very long-range charge transport in DNA,” Chem. Phys. 281(2–3), 393–408 (2002).
    [CrossRef]
  20. J. Jortner, M. Bixton, A. A. Voityuk, N. Rosch, “Superexchange mediated charge hopping in DNA,” J. Phys. Chem. 106(33), 7599–7606 (2002).
    [CrossRef]

2013

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

C. H. Wohlgamuth, M. A. McWilliams, J. D. Slinker, “DNA as a molecular wire: Distance and sequence dependence,” Anal. Chem. 85(18), 8634–8640 (2013).
[CrossRef] [PubMed]

2012

R. K. Gupta, A. A. Al-Ghamdi, O. Al-Hartomy, H. Hasar, F. El-Tantawy, F. Yakuphanoglu, “Series resistance controlling photosensor of Ag/DNA/p-Si/Al diode,” Synth. Met. 162(11–12), 981–987 (2012).
[CrossRef]

2011

2010

T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[CrossRef]

E. H. Steenbergen, M. J. DiNezza, W. H. G. Dettlaff, S. H. Lim, Y.-H. Zhang, “Optically-addressed two-terminal multicolor photodetector,” Appl. Phys. Lett. 97(16), 161111 (2010).
[CrossRef]

2009

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[CrossRef] [PubMed]

J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, B. D. Weaver, “Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” Appl. Phys. Lett. 94(17), 171102 (2009).
[CrossRef]

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[CrossRef]

2008

J.-S. Jang, “High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN-GaN superlattice,” Appl. Phys. Lett. 93(8), 081118 (2008).
[CrossRef]

B. H. Mahmoud, C. L. Hexsel, I. H. Hamzavi, H. W. Lim, “Effects of visible light on the skin,” Photochem. Photobiol. 84(2), 450–462 (2008).
[CrossRef] [PubMed]

2007

E. Muñoz, “(Al,In,Ga)N-based photodetectors. Some materials issues,” Phys. Status Solidi, B Basic Res. 244(8), 2859–2877 (2007).
[CrossRef]

S.-M. Kim, Y.-M. Yu, J.-H. Baek, S.-R. Jeon, H.-J. Ahn, J.-S. Jang, “Plasma-induced damage influence on the n-contact properties and device performance of ultraviolet InGaN/AlGaN light-emitting diodes,” J. Electrochem. Soc. 154(5), H384–H388 (2007).
[CrossRef]

2003

S. Delaney, J. K. Barton, “Long-range DNA charge transport,” J. Org. Chem. 68(17), 6475–6483 (2003).
[CrossRef] [PubMed]

2002

M. Bixon, J. Jortner, “Long-range and very long-range charge transport in DNA,” Chem. Phys. 281(2–3), 393–408 (2002).
[CrossRef]

J. Jortner, M. Bixton, A. A. Voityuk, N. Rosch, “Superexchange mediated charge hopping in DNA,” J. Phys. Chem. 106(33), 7599–7606 (2002).
[CrossRef]

2000

J.-S. Jang, T.-Y. Seong, “Mechanisms for the reduction of the Schottky barrier heights of high-quality nonalloyed Pt contacts on surface-treated p-GaN,” J. Appl. Phys. 88(5), 3064–3066 (2000).
[CrossRef]

D. Porath, A. Bezryadin, S. de Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
[CrossRef] [PubMed]

1985

R. A. Marcus, N. Sutin, “Electron transfers in chemistry and biology,” Biochim. Biophys. Acta 811(3), 265–322 (1985).
[CrossRef] [PubMed]

Ahn, H.-J.

S.-M. Kim, Y.-M. Yu, J.-H. Baek, S.-R. Jeon, H.-J. Ahn, J.-S. Jang, “Plasma-induced damage influence on the n-contact properties and device performance of ultraviolet InGaN/AlGaN light-emitting diodes,” J. Electrochem. Soc. 154(5), H384–H388 (2007).
[CrossRef]

Al-Ghamdi, A. A.

R. K. Gupta, A. A. Al-Ghamdi, O. Al-Hartomy, H. Hasar, F. El-Tantawy, F. Yakuphanoglu, “Series resistance controlling photosensor of Ag/DNA/p-Si/Al diode,” Synth. Met. 162(11–12), 981–987 (2012).
[CrossRef]

Al-Hartomy, O.

R. K. Gupta, A. A. Al-Ghamdi, O. Al-Hartomy, H. Hasar, F. El-Tantawy, F. Yakuphanoglu, “Series resistance controlling photosensor of Ag/DNA/p-Si/Al diode,” Synth. Met. 162(11–12), 981–987 (2012).
[CrossRef]

Avouris, P.

T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[CrossRef]

Baek, J.-H.

S.-M. Kim, Y.-M. Yu, J.-H. Baek, S.-R. Jeon, H.-J. Ahn, J.-S. Jang, “Plasma-induced damage influence on the n-contact properties and device performance of ultraviolet InGaN/AlGaN light-emitting diodes,” J. Electrochem. Soc. 154(5), H384–H388 (2007).
[CrossRef]

Barton, J. K.

S. Delaney, J. K. Barton, “Long-range DNA charge transport,” J. Org. Chem. 68(17), 6475–6483 (2003).
[CrossRef] [PubMed]

Bezryadin, A.

D. Porath, A. Bezryadin, S. de Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
[CrossRef] [PubMed]

Bixon, M.

M. Bixon, J. Jortner, “Long-range and very long-range charge transport in DNA,” Chem. Phys. 281(2–3), 393–408 (2002).
[CrossRef]

Bixton, M.

J. Jortner, M. Bixton, A. A. Voityuk, N. Rosch, “Superexchange mediated charge hopping in DNA,” J. Phys. Chem. 106(33), 7599–7606 (2002).
[CrossRef]

Campbell, A.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[CrossRef] [PubMed]

Check, M.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[CrossRef] [PubMed]

Cheng, Z.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

Dai, L.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[CrossRef] [PubMed]

de Vries, S.

D. Porath, A. Bezryadin, S. de Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
[CrossRef] [PubMed]

Dekker, C.

D. Porath, A. Bezryadin, S. de Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
[CrossRef] [PubMed]

Delaney, S.

S. Delaney, J. K. Barton, “Long-range DNA charge transport,” J. Org. Chem. 68(17), 6475–6483 (2003).
[CrossRef] [PubMed]

Dettlaff, W. H. G.

E. H. Steenbergen, M. J. DiNezza, W. H. G. Dettlaff, S. H. Lim, Y.-H. Zhang, “Optically-addressed two-terminal multicolor photodetector,” Appl. Phys. Lett. 97(16), 161111 (2010).
[CrossRef]

DiNezza, M. J.

E. H. Steenbergen, M. J. DiNezza, W. H. G. Dettlaff, S. H. Lim, Y.-H. Zhang, “Optically-addressed two-terminal multicolor photodetector,” Appl. Phys. Lett. 97(16), 161111 (2010).
[CrossRef]

El-Tantawy, F.

R. K. Gupta, A. A. Al-Ghamdi, O. Al-Hartomy, H. Hasar, F. El-Tantawy, F. Yakuphanoglu, “Series resistance controlling photosensor of Ag/DNA/p-Si/Al diode,” Synth. Met. 162(11–12), 981–987 (2012).
[CrossRef]

Grote, J.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[CrossRef] [PubMed]

Gupta, R. K.

R. K. Gupta, A. A. Al-Ghamdi, O. Al-Hartomy, H. Hasar, F. El-Tantawy, F. Yakuphanoglu, “Series resistance controlling photosensor of Ag/DNA/p-Si/Al diode,” Synth. Met. 162(11–12), 981–987 (2012).
[CrossRef]

Hamzavi, I. H.

B. H. Mahmoud, C. L. Hexsel, I. H. Hamzavi, H. W. Lim, “Effects of visible light on the skin,” Photochem. Photobiol. 84(2), 450–462 (2008).
[CrossRef] [PubMed]

Hasar, H.

R. K. Gupta, A. A. Al-Ghamdi, O. Al-Hartomy, H. Hasar, F. El-Tantawy, F. Yakuphanoglu, “Series resistance controlling photosensor of Ag/DNA/p-Si/Al diode,” Synth. Met. 162(11–12), 981–987 (2012).
[CrossRef]

Hexsel, C. L.

B. H. Mahmoud, C. L. Hexsel, I. H. Hamzavi, H. W. Lim, “Effects of visible light on the skin,” Photochem. Photobiol. 84(2), 450–462 (2008).
[CrossRef] [PubMed]

Huang, F. W.

Jang, J.-S.

J.-S. Jang, “High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN-GaN superlattice,” Appl. Phys. Lett. 93(8), 081118 (2008).
[CrossRef]

S.-M. Kim, Y.-M. Yu, J.-H. Baek, S.-R. Jeon, H.-J. Ahn, J.-S. Jang, “Plasma-induced damage influence on the n-contact properties and device performance of ultraviolet InGaN/AlGaN light-emitting diodes,” J. Electrochem. Soc. 154(5), H384–H388 (2007).
[CrossRef]

J.-S. Jang, T.-Y. Seong, “Mechanisms for the reduction of the Schottky barrier heights of high-quality nonalloyed Pt contacts on surface-treated p-GaN,” J. Appl. Phys. 88(5), 3064–3066 (2000).
[CrossRef]

Jeon, S.-R.

S.-M. Kim, Y.-M. Yu, J.-H. Baek, S.-R. Jeon, H.-J. Ahn, J.-S. Jang, “Plasma-induced damage influence on the n-contact properties and device performance of ultraviolet InGaN/AlGaN light-emitting diodes,” J. Electrochem. Soc. 154(5), H384–H388 (2007).
[CrossRef]

Jortner, J.

M. Bixon, J. Jortner, “Long-range and very long-range charge transport in DNA,” Chem. Phys. 281(2–3), 393–408 (2002).
[CrossRef]

J. Jortner, M. Bixton, A. A. Voityuk, N. Rosch, “Superexchange mediated charge hopping in DNA,” J. Phys. Chem. 106(33), 7599–7606 (2002).
[CrossRef]

Kim, S.-M.

S.-M. Kim, Y.-M. Yu, J.-H. Baek, S.-R. Jeon, H.-J. Ahn, J.-S. Jang, “Plasma-induced damage influence on the n-contact properties and device performance of ultraviolet InGaN/AlGaN light-emitting diodes,” J. Electrochem. Soc. 154(5), H384–H388 (2007).
[CrossRef]

Kunets, V. P.

J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, B. D. Weaver, “Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” Appl. Phys. Lett. 94(17), 171102 (2009).
[CrossRef]

Lee, M.-L.

Li, Z.

J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, B. D. Weaver, “Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” Appl. Phys. Lett. 94(17), 171102 (2009).
[CrossRef]

Lim, H. W.

B. H. Mahmoud, C. L. Hexsel, I. H. Hamzavi, H. W. Lim, “Effects of visible light on the skin,” Photochem. Photobiol. 84(2), 450–462 (2008).
[CrossRef] [PubMed]

Lim, S. H.

E. H. Steenbergen, M. J. DiNezza, W. H. G. Dettlaff, S. H. Lim, Y.-H. Zhang, “Optically-addressed two-terminal multicolor photodetector,” Appl. Phys. Lett. 97(16), 161111 (2010).
[CrossRef]

Mahmoud, B. H.

B. H. Mahmoud, C. L. Hexsel, I. H. Hamzavi, H. W. Lim, “Effects of visible light on the skin,” Photochem. Photobiol. 84(2), 450–462 (2008).
[CrossRef] [PubMed]

Manasreh, M. O.

J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, B. D. Weaver, “Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” Appl. Phys. Lett. 94(17), 171102 (2009).
[CrossRef]

Marcus, R. A.

R. A. Marcus, N. Sutin, “Electron transfers in chemistry and biology,” Biochim. Biophys. Acta 811(3), 265–322 (1985).
[CrossRef] [PubMed]

McWilliams, M. A.

C. H. Wohlgamuth, M. A. McWilliams, J. D. Slinker, “DNA as a molecular wire: Distance and sequence dependence,” Anal. Chem. 85(18), 8634–8640 (2013).
[CrossRef] [PubMed]

Mue, T. S.

Mueller, T.

T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[CrossRef]

Muñoz, E.

E. Muñoz, “(Al,In,Ga)N-based photodetectors. Some materials issues,” Phys. Status Solidi, B Basic Res. 244(8), 2859–2877 (2007).
[CrossRef]

Naik, R.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[CrossRef] [PubMed]

Porath, D.

D. Porath, A. Bezryadin, S. de Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
[CrossRef] [PubMed]

Rosch, N.

J. Jortner, M. Bixton, A. A. Voityuk, N. Rosch, “Superexchange mediated charge hopping in DNA,” J. Phys. Chem. 106(33), 7599–7606 (2002).
[CrossRef]

Salamo, G. J.

J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, B. D. Weaver, “Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” Appl. Phys. Lett. 94(17), 171102 (2009).
[CrossRef]

Seong, T.-Y.

J.-S. Jang, T.-Y. Seong, “Mechanisms for the reduction of the Schottky barrier heights of high-quality nonalloyed Pt contacts on surface-treated p-GaN,” J. Appl. Phys. 88(5), 3064–3066 (2000).
[CrossRef]

Shao, D.

J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, B. D. Weaver, “Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” Appl. Phys. Lett. 94(17), 171102 (2009).
[CrossRef]

Sheu, J. K.

Slinker, J. D.

C. H. Wohlgamuth, M. A. McWilliams, J. D. Slinker, “DNA as a molecular wire: Distance and sequence dependence,” Anal. Chem. 85(18), 8634–8640 (2013).
[CrossRef] [PubMed]

Steenbergen, E. H.

E. H. Steenbergen, M. J. DiNezza, W. H. G. Dettlaff, S. H. Lim, Y.-H. Zhang, “Optically-addressed two-terminal multicolor photodetector,” Appl. Phys. Lett. 97(16), 161111 (2010).
[CrossRef]

Subramanyam, G.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[CrossRef] [PubMed]

Sun, Q.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[CrossRef] [PubMed]

Sutin, N.

R. A. Marcus, N. Sutin, “Electron transfers in chemistry and biology,” Biochim. Biophys. Acta 811(3), 265–322 (1985).
[CrossRef] [PubMed]

Tsang, H. K.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

Voityuk, A. A.

J. Jortner, M. Bixton, A. A. Voityuk, N. Rosch, “Superexchange mediated charge hopping in DNA,” J. Phys. Chem. 106(33), 7599–7606 (2002).
[CrossRef]

Wang, X.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

Wang, Y.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[CrossRef] [PubMed]

Wang, Z. M.

J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, B. D. Weaver, “Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” Appl. Phys. Lett. 94(17), 171102 (2009).
[CrossRef]

Weaver, B. D.

J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, B. D. Weaver, “Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” Appl. Phys. Lett. 94(17), 171102 (2009).
[CrossRef]

Wohlgamuth, C. H.

C. H. Wohlgamuth, M. A. McWilliams, J. D. Slinker, “DNA as a molecular wire: Distance and sequence dependence,” Anal. Chem. 85(18), 8634–8640 (2013).
[CrossRef] [PubMed]

Wu, J.

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[CrossRef]

J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, B. D. Weaver, “Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” Appl. Phys. Lett. 94(17), 171102 (2009).
[CrossRef]

Xia, F.

T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[CrossRef]

Xu, J.-B.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

Xu, K.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

Yakuphanoglu, F.

R. K. Gupta, A. A. Al-Ghamdi, O. Al-Hartomy, H. Hasar, F. El-Tantawy, F. Yakuphanoglu, “Series resistance controlling photosensor of Ag/DNA/p-Si/Al diode,” Synth. Met. 162(11–12), 981–987 (2012).
[CrossRef]

Yang, J. H.

Yu, Y.-M.

S.-M. Kim, Y.-M. Yu, J.-H. Baek, S.-R. Jeon, H.-J. Ahn, J.-S. Jang, “Plasma-induced damage influence on the n-contact properties and device performance of ultraviolet InGaN/AlGaN light-emitting diodes,” J. Electrochem. Soc. 154(5), H384–H388 (2007).
[CrossRef]

Zhang, Y.-H.

E. H. Steenbergen, M. J. DiNezza, W. H. G. Dettlaff, S. H. Lim, Y.-H. Zhang, “Optically-addressed two-terminal multicolor photodetector,” Appl. Phys. Lett. 97(16), 161111 (2010).
[CrossRef]

ACS Nano

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[CrossRef] [PubMed]

Anal. Chem.

C. H. Wohlgamuth, M. A. McWilliams, J. D. Slinker, “DNA as a molecular wire: Distance and sequence dependence,” Anal. Chem. 85(18), 8634–8640 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J.-S. Jang, “High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN-GaN superlattice,” Appl. Phys. Lett. 93(8), 081118 (2008).
[CrossRef]

J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, B. D. Weaver, “Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” Appl. Phys. Lett. 94(17), 171102 (2009).
[CrossRef]

E. H. Steenbergen, M. J. DiNezza, W. H. G. Dettlaff, S. H. Lim, Y.-H. Zhang, “Optically-addressed two-terminal multicolor photodetector,” Appl. Phys. Lett. 97(16), 161111 (2010).
[CrossRef]

Biochim. Biophys. Acta

R. A. Marcus, N. Sutin, “Electron transfers in chemistry and biology,” Biochim. Biophys. Acta 811(3), 265–322 (1985).
[CrossRef] [PubMed]

Chem. Phys.

M. Bixon, J. Jortner, “Long-range and very long-range charge transport in DNA,” Chem. Phys. 281(2–3), 393–408 (2002).
[CrossRef]

J. Appl. Phys.

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[CrossRef]

J.-S. Jang, T.-Y. Seong, “Mechanisms for the reduction of the Schottky barrier heights of high-quality nonalloyed Pt contacts on surface-treated p-GaN,” J. Appl. Phys. 88(5), 3064–3066 (2000).
[CrossRef]

J. Electrochem. Soc.

S.-M. Kim, Y.-M. Yu, J.-H. Baek, S.-R. Jeon, H.-J. Ahn, J.-S. Jang, “Plasma-induced damage influence on the n-contact properties and device performance of ultraviolet InGaN/AlGaN light-emitting diodes,” J. Electrochem. Soc. 154(5), H384–H388 (2007).
[CrossRef]

J. Org. Chem.

S. Delaney, J. K. Barton, “Long-range DNA charge transport,” J. Org. Chem. 68(17), 6475–6483 (2003).
[CrossRef] [PubMed]

J. Phys. Chem.

J. Jortner, M. Bixton, A. A. Voityuk, N. Rosch, “Superexchange mediated charge hopping in DNA,” J. Phys. Chem. 106(33), 7599–7606 (2002).
[CrossRef]

Nat. Photonics

T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[CrossRef]

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

Nature

D. Porath, A. Bezryadin, S. de Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
[CrossRef] [PubMed]

Opt. Express

Photochem. Photobiol.

B. H. Mahmoud, C. L. Hexsel, I. H. Hamzavi, H. W. Lim, “Effects of visible light on the skin,” Photochem. Photobiol. 84(2), 450–462 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi, B Basic Res.

E. Muñoz, “(Al,In,Ga)N-based photodetectors. Some materials issues,” Phys. Status Solidi, B Basic Res. 244(8), 2859–2877 (2007).
[CrossRef]

Synth. Met.

R. K. Gupta, A. A. Al-Ghamdi, O. Al-Hartomy, H. Hasar, F. El-Tantawy, F. Yakuphanoglu, “Series resistance controlling photosensor of Ag/DNA/p-Si/Al diode,” Synth. Met. 162(11–12), 981–987 (2012).
[CrossRef]

Other

http://www.sigmaaldrich.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic configuration of DNA-CTMA-based n-GaN photodiode.

Fig. 2
Fig. 2

Logarithmic current-voltage (I-V) characteristics of the DG-PDs under dark condition, halogen, and UV illumination. The inset shows the Logarithmic I-V characteristics of the reference (Au/n-GaN) diode and DG-PD under dark condition. The arrows indicate the movement direction of the I-V curves.

Fig. 3
Fig. 3

Bias-dependent responsivity characteristics of the DG-PDs measured at (a) −0.5 V, (b) 0 V, (c) 0.5 V, and (d) 1 V. The negative bias gives rise to the occurrence of high responsivity in the visible ranges, while the positive biases of ≥ 0 V lead to UV-sensitive responsivity.

Fig. 4
Fig. 4

Transient photocurrent characteristics and the operation modes of DG-PDs under (a) halogen and (b) UV illuminations. The insets show the on-off transient characteristics of the generated photocurrents in milliseconds. In the left Fig. the red arrow and the arrow number mean the generated photocurrent and how much the photocurrent is generated, respectively.

Fig. 5
Fig. 5

The possible energy band diagrams (a), (b), and (c) of the DG-PDs for dark, halogen and UV illumination cases, respectively.

Metrics