Abstract

The resonant absorption in a planar metamaterial is studied theoretically. We present a simple physical model describing this phenomenon in terms of equivalent resonant circuit. We discuss the role of radiative and dissipative damping of resonant mode supported by a metamaterial in the formation of absorption spectra. We show that the results of rigorous calculations of Maxwell equations can be fully retrieved with simple model describing the system in terms of equivalent resonant circuit. This simple model allows us to explain the total absorption effect observed in the system on a common physical ground by referring it to the impedance matching condition at the resonance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  2. B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
    [CrossRef]
  3. Y. Cheng, H. Yang, Z. Cheng, B. Xiao, “A planar polarization-insensitive metamaterial absorber,” Photonics and Nanostructures Fundamentals and Applications 9, 8–14 (2011).
    [CrossRef]
  4. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
    [CrossRef] [PubMed]
  5. T. V. Teperik, F. J. García de Abajo, V. V. Popov, M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
    [CrossRef]
  6. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
    [CrossRef] [PubMed]
  7. D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
    [CrossRef]
  8. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Optics Lett. 37, 154–156 (2012).
    [CrossRef]
  9. S. Collin, F. Pardo, R. Teissier, J.-L. Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett. 85, 194 (2004).
    [CrossRef]
  10. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
    [CrossRef]
  11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [CrossRef] [PubMed]
  12. K. B. Alici, A. B. Turhan, C. M. Soukoulis, E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express 19, 14260–14267 (2011).
    [CrossRef] [PubMed]
  13. M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
    [CrossRef]
  14. X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
    [CrossRef] [PubMed]
  15. T. Maier, H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35, 3766–3768 (2010).
    [CrossRef] [PubMed]
  16. G. Dayal, S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38, 272–274 (2013).
    [CrossRef] [PubMed]
  17. T. V. Teperik, F. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
    [CrossRef]
  18. P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13, 075005 (2011).
    [CrossRef]
  19. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [CrossRef] [PubMed]
  20. J. Yang, Z. Shen, “A thin and broadband absorber using double-square loops,” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 6, 388–391 (2007).
    [CrossRef]
  21. A. F. Arya, M. Mishrikey, C. Hafner, R. Vahldieck, “Radar absorbers based on frequency selective surfaces on perforated substrates,” J. Computational Theoretical Nanosci. 5, 704–710 (2008).
    [CrossRef]
  22. A. Fallahi, A. Yahaghi, H.-R. Benedickter, H. Abiri, M. Shahabadi, C. Hafner, “Thin wideband radar absorbers,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 58, 4051–4058 (2010).
    [CrossRef]
  23. H. Oraizi, A. Abdolali, N. Vaseghi, “Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section,” Prog. Electromagn. Res. 101, 323–337 (2010).
    [CrossRef]
  24. R. F. Huang, Z. W. Li, L. B. Kong, L. Liu, S. Matitsine, “Analysis and design of an ultra-thin metamaterial absorber,” Prog. Electromagn. Res. B 14, 407–429 (2009).
    [CrossRef]
  25. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  26. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61 (2002).
    [CrossRef] [PubMed]
  27. J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
    [CrossRef]
  28. P. Bouchon, C. Koechlin, F. Pardo, R. Hadar, J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37, 1038–1040 (2012).
    [CrossRef] [PubMed]
  29. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19, 17413–17420 (2011).
    [CrossRef] [PubMed]
  30. H. Wakatsuchi, S. Greedy, C. Christopoulos, J. Paul, “Customised broadband metamaterial absorbers for arbitrary polarisation,” Opt. Express 18, 22187–22198 (2010).
    [CrossRef] [PubMed]
  31. W. Zhu, X. Zhao, B. Gong, L. Liu, B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102, 147–151 (2011).
    [CrossRef]
  32. W. Zhu, X. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26, 2382–2385 (2009).
    [CrossRef]
  33. P. V. Tuong, V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, Y. P. Lee, “Perfect-absorber metamaterial based on flower-shaped structure,” Photonics and Nanostructures - Fundamentals and Applications 11, 89–94 (2013).
    [CrossRef]
  34. http://www.comsol.com .
  35. C. A. Balanis, Antenna Theory: Analysis and Designs (John Wiley & Sons, Inc., NY, 1997).
  36. T. V. Teperik, V. V. Popov, F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005).
    [CrossRef]
  37. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

2013

P. V. Tuong, V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, Y. P. Lee, “Perfect-absorber metamaterial based on flower-shaped structure,” Photonics and Nanostructures - Fundamentals and Applications 11, 89–94 (2013).
[CrossRef]

G. Dayal, S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38, 272–274 (2013).
[CrossRef] [PubMed]

2012

P. Bouchon, C. Koechlin, F. Pardo, R. Hadar, J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37, 1038–1040 (2012).
[CrossRef] [PubMed]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Optics Lett. 37, 154–156 (2012).
[CrossRef]

2011

Y. Cheng, H. Yang, Z. Cheng, B. Xiao, “A planar polarization-insensitive metamaterial absorber,” Photonics and Nanostructures Fundamentals and Applications 9, 8–14 (2011).
[CrossRef]

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13, 075005 (2011).
[CrossRef]

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
[CrossRef] [PubMed]

K. B. Alici, A. B. Turhan, C. M. Soukoulis, E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express 19, 14260–14267 (2011).
[CrossRef] [PubMed]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19, 17413–17420 (2011).
[CrossRef] [PubMed]

W. Zhu, X. Zhao, B. Gong, L. Liu, B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102, 147–151 (2011).
[CrossRef]

2010

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef] [PubMed]

H. Wakatsuchi, S. Greedy, C. Christopoulos, J. Paul, “Customised broadband metamaterial absorbers for arbitrary polarisation,” Opt. Express 18, 22187–22198 (2010).
[CrossRef] [PubMed]

T. Maier, H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35, 3766–3768 (2010).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

A. Fallahi, A. Yahaghi, H.-R. Benedickter, H. Abiri, M. Shahabadi, C. Hafner, “Thin wideband radar absorbers,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 58, 4051–4058 (2010).
[CrossRef]

H. Oraizi, A. Abdolali, N. Vaseghi, “Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section,” Prog. Electromagn. Res. 101, 323–337 (2010).
[CrossRef]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

2009

B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[CrossRef]

R. F. Huang, Z. W. Li, L. B. Kong, L. Liu, S. Matitsine, “Analysis and design of an ultra-thin metamaterial absorber,” Prog. Electromagn. Res. B 14, 407–429 (2009).
[CrossRef]

M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

W. Zhu, X. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26, 2382–2385 (2009).
[CrossRef]

2008

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef] [PubMed]

A. F. Arya, M. Mishrikey, C. Hafner, R. Vahldieck, “Radar absorbers based on frequency selective surfaces on perforated substrates,” J. Computational Theoretical Nanosci. 5, 704–710 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

T. V. Teperik, F. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

2007

J. Yang, Z. Shen, “A thin and broadband absorber using double-square loops,” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 6, 388–391 (2007).
[CrossRef]

T. V. Teperik, F. J. García de Abajo, V. V. Popov, M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
[CrossRef]

2005

T. V. Teperik, V. V. Popov, F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005).
[CrossRef]

2004

S. Collin, F. Pardo, R. Teissier, J.-L. Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett. 85, 194 (2004).
[CrossRef]

2002

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61 (2002).
[CrossRef] [PubMed]

Abdelsalam, M.

T. V. Teperik, F. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Abdolali, A.

H. Oraizi, A. Abdolali, N. Vaseghi, “Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section,” Prog. Electromagn. Res. 101, 323–337 (2010).
[CrossRef]

Abiri, H.

A. Fallahi, A. Yahaghi, H.-R. Benedickter, H. Abiri, M. Shahabadi, C. Hafner, “Thin wideband radar absorbers,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 58, 4051–4058 (2010).
[CrossRef]

Alici, K. B.

Arya, A. F.

A. F. Arya, M. Mishrikey, C. Hafner, R. Vahldieck, “Radar absorbers based on frequency selective surfaces on perforated substrates,” J. Computational Theoretical Nanosci. 5, 704–710 (2008).
[CrossRef]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Averitt, R. D.

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Azad, A. K.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Designs (John Wiley & Sons, Inc., NY, 1997).

Bartlett, P. N.

T. V. Teperik, F. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Benedickter, H.-R.

A. Fallahi, A. Yahaghi, H.-R. Benedickter, H. Abiri, M. Shahabadi, C. Hafner, “Thin wideband radar absorbers,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 58, 4051–4058 (2010).
[CrossRef]

Bingham, C. M.

Borisov, A. G.

T. V. Teperik, F. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Bouchon, P.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Brueckl, H.

Cai, G.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13, 075005 (2011).
[CrossRef]

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61 (2002).
[CrossRef] [PubMed]

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61 (2002).
[CrossRef] [PubMed]

Cheng, Y.

Y. Cheng, H. Yang, Z. Cheng, B. Xiao, “A planar polarization-insensitive metamaterial absorber,” Photonics and Nanostructures Fundamentals and Applications 9, 8–14 (2011).
[CrossRef]

Cheng, Z.

Y. Cheng, H. Yang, Z. Cheng, B. Xiao, “A planar polarization-insensitive metamaterial absorber,” Photonics and Nanostructures Fundamentals and Applications 9, 8–14 (2011).
[CrossRef]

Choi, E. H.

P. V. Tuong, V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, Y. P. Lee, “Perfect-absorber metamaterial based on flower-shaped structure,” Photonics and Nanostructures - Fundamentals and Applications 11, 89–94 (2013).
[CrossRef]

Chowdhury, D. R.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Optics Lett. 37, 154–156 (2012).
[CrossRef]

Christopoulos, C.

Collin, S.

S. Collin, F. Pardo, R. Teissier, J.-L. Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett. 85, 194 (2004).
[CrossRef]

Cui, T. J.

Dayal, G.

Diem, M.

M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Ding, P.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13, 075005 (2011).
[CrossRef]

Fallahi, A.

A. Fallahi, A. Yahaghi, H.-R. Benedickter, H. Abiri, M. Shahabadi, C. Hafner, “Thin wideband radar absorbers,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 58, 4051–4058 (2010).
[CrossRef]

Fan, C.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13, 075005 (2011).
[CrossRef]

Feng, Q.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

García de Abajo, F.

T. V. Teperik, F. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, V. V. Popov, M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
[CrossRef]

T. V. Teperik, V. V. Popov, F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Gong, B.

W. Zhu, X. Zhao, B. Gong, L. Liu, B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102, 147–151 (2011).
[CrossRef]

Greedy, S.

Greffet, J.-J.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61 (2002).
[CrossRef] [PubMed]

Hadar, R.

Hafner, C.

A. Fallahi, A. Yahaghi, H.-R. Benedickter, H. Abiri, M. Shahabadi, C. Hafner, “Thin wideband radar absorbers,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 58, 4051–4058 (2010).
[CrossRef]

A. F. Arya, M. Mishrikey, C. Hafner, R. Vahldieck, “Radar absorbers based on frequency selective surfaces on perforated substrates,” J. Computational Theoretical Nanosci. 5, 704–710 (2008).
[CrossRef]

Hao, J.

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Hou-Tong,

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Optics Lett. 37, 154–156 (2012).
[CrossRef]

Hu, C.

Hu, W.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13, 075005 (2011).
[CrossRef]

Huang, C.

Huang, L.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Optics Lett. 37, 154–156 (2012).
[CrossRef]

Huang, R. F.

R. F. Huang, Z. W. Li, L. B. Kong, L. Liu, S. Matitsine, “Analysis and design of an ultra-thin metamaterial absorber,” Prog. Electromagn. Res. B 14, 407–429 (2009).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Jiang, W. X.

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61 (2002).
[CrossRef] [PubMed]

Koechlin, C.

Kong, L. B.

R. F. Huang, Z. W. Li, L. B. Kong, L. Liu, S. Matitsine, “Analysis and design of an ultra-thin metamaterial absorber,” Prog. Electromagn. Res. B 14, 407–429 (2009).
[CrossRef]

Koschny, T.

M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[CrossRef]

Lam, V. D.

P. V. Tuong, V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, Y. P. Lee, “Perfect-absorber metamaterial based on flower-shaped structure,” Photonics and Nanostructures - Fundamentals and Applications 11, 89–94 (2013).
[CrossRef]

Landy, N. I.

Lee, Y. P.

P. V. Tuong, V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, Y. P. Lee, “Perfect-absorber metamaterial based on flower-shaped structure,” Photonics and Nanostructures - Fundamentals and Applications 11, 89–94 (2013).
[CrossRef]

Li, H.

Li, Z. W.

R. F. Huang, Z. W. Li, L. B. Kong, L. Liu, S. Matitsine, “Analysis and design of an ultra-thin metamaterial absorber,” Prog. Electromagn. Res. B 14, 407–429 (2009).
[CrossRef]

Liang, E.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13, 075005 (2011).
[CrossRef]

Liu, L.

W. Zhu, X. Zhao, B. Gong, L. Liu, B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102, 147–151 (2011).
[CrossRef]

R. F. Huang, Z. W. Li, L. B. Kong, L. Liu, S. Matitsine, “Analysis and design of an ultra-thin metamaterial absorber,” Prog. Electromagn. Res. B 14, 407–429 (2009).
[CrossRef]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef] [PubMed]

Luo, S.-N.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Optics Lett. 37, 154–156 (2012).
[CrossRef]

Luo, X.

Ma, H. F.

Maier, T.

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61 (2002).
[CrossRef] [PubMed]

Matitsine, S.

R. F. Huang, Z. W. Li, L. B. Kong, L. Liu, S. Matitsine, “Analysis and design of an ultra-thin metamaterial absorber,” Prog. Electromagn. Res. B 14, 407–429 (2009).
[CrossRef]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Mishrikey, M.

A. F. Arya, M. Mishrikey, C. Hafner, R. Vahldieck, “Radar absorbers based on frequency selective surfaces on perforated substrates,” J. Computational Theoretical Nanosci. 5, 704–710 (2008).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61 (2002).
[CrossRef] [PubMed]

Nikitov, S. A.

P. V. Tuong, V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, Y. P. Lee, “Perfect-absorber metamaterial based on flower-shaped structure,” Photonics and Nanostructures - Fundamentals and Applications 11, 89–94 (2013).
[CrossRef]

O’Hara, J. F.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[CrossRef]

Oraizi, H.

H. Oraizi, A. Abdolali, N. Vaseghi, “Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section,” Prog. Electromagn. Res. 101, 323–337 (2010).
[CrossRef]

Ozbay, E.

Padilla, W. J.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef] [PubMed]

Pardo, F.

P. Bouchon, C. Koechlin, F. Pardo, R. Hadar, J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37, 1038–1040 (2012).
[CrossRef] [PubMed]

S. Collin, F. Pardo, R. Teissier, J.-L. Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett. 85, 194 (2004).
[CrossRef]

Park, J. W.

P. V. Tuong, V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, Y. P. Lee, “Perfect-absorber metamaterial based on flower-shaped structure,” Photonics and Nanostructures - Fundamentals and Applications 11, 89–94 (2013).
[CrossRef]

Paul, J.

Pelouard, J.-L.

P. Bouchon, C. Koechlin, F. Pardo, R. Hadar, J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37, 1038–1040 (2012).
[CrossRef] [PubMed]

S. Collin, F. Pardo, R. Teissier, J.-L. Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett. 85, 194 (2004).
[CrossRef]

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Popov, V. V.

T. V. Teperik, F. J. García de Abajo, V. V. Popov, M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
[CrossRef]

T. V. Teperik, V. V. Popov, F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005).
[CrossRef]

Pu, M.

Qiu, M.

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Ramakrishna, S. A.

Ramani, S.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Optics Lett. 37, 154–156 (2012).
[CrossRef]

Reiten, M. T.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Optics Lett. 37, 154–156 (2012).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Shahabadi, M.

A. Fallahi, A. Yahaghi, H.-R. Benedickter, H. Abiri, M. Shahabadi, C. Hafner, “Thin wideband radar absorbers,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 58, 4051–4058 (2010).
[CrossRef]

Shchegolkov, D. Y.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[CrossRef]

Shen, X.

Shen, Z.

J. Yang, Z. Shen, “A thin and broadband absorber using double-square loops,” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 6, 388–391 (2007).
[CrossRef]

Shur, M. S.

T. V. Teperik, F. J. García de Abajo, V. V. Popov, M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
[CrossRef]

Simakov, E. I.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Soukoulis, C. M.

K. B. Alici, A. B. Turhan, C. M. Soukoulis, E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express 19, 14260–14267 (2011).
[CrossRef] [PubMed]

M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[CrossRef]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef] [PubMed]

Su, B.

W. Zhu, X. Zhao, B. Gong, L. Liu, B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102, 147–151 (2011).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Tao, H.

Taylor, A. J.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Optics Lett. 37, 154–156 (2012).
[CrossRef]

Teissier, R.

S. Collin, F. Pardo, R. Teissier, J.-L. Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett. 85, 194 (2004).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

T. V. Teperik, F. J. García de Abajo, V. V. Popov, M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
[CrossRef]

T. V. Teperik, V. V. Popov, F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005).
[CrossRef]

Tuong, P. V.

P. V. Tuong, V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, Y. P. Lee, “Perfect-absorber metamaterial based on flower-shaped structure,” Photonics and Nanostructures - Fundamentals and Applications 11, 89–94 (2013).
[CrossRef]

Turhan, A. B.

Vahldieck, R.

A. F. Arya, M. Mishrikey, C. Hafner, R. Vahldieck, “Radar absorbers based on frequency selective surfaces on perforated substrates,” J. Computational Theoretical Nanosci. 5, 704–710 (2008).
[CrossRef]

Vaseghi, N.

H. Oraizi, A. Abdolali, N. Vaseghi, “Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section,” Prog. Electromagn. Res. 101, 323–337 (2010).
[CrossRef]

Wakatsuchi, H.

Wang, B.

B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[CrossRef]

Wang, C.

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Wang, M.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Xiao, B.

Y. Cheng, H. Yang, Z. Cheng, B. Xiao, “A planar polarization-insensitive metamaterial absorber,” Photonics and Nanostructures Fundamentals and Applications 9, 8–14 (2011).
[CrossRef]

Xue, Q.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13, 075005 (2011).
[CrossRef]

Yahaghi, A.

A. Fallahi, A. Yahaghi, H.-R. Benedickter, H. Abiri, M. Shahabadi, C. Hafner, “Thin wideband radar absorbers,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 58, 4051–4058 (2010).
[CrossRef]

Yang, H.

Y. Cheng, H. Yang, Z. Cheng, B. Xiao, “A planar polarization-insensitive metamaterial absorber,” Photonics and Nanostructures Fundamentals and Applications 9, 8–14 (2011).
[CrossRef]

Yang, J.

J. Yang, Z. Shen, “A thin and broadband absorber using double-square loops,” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 6, 388–391 (2007).
[CrossRef]

Zhang, X.

Zhao, J.

Zhao, X.

W. Zhu, X. Zhao, B. Gong, L. Liu, B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102, 147–151 (2011).
[CrossRef]

W. Zhu, X. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26, 2382–2385 (2009).
[CrossRef]

Zhao, Z.

Zhou, L.

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Zhu, W.

W. Zhu, X. Zhao, B. Gong, L. Liu, B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102, 147–151 (2011).
[CrossRef]

W. Zhu, X. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26, 2382–2385 (2009).
[CrossRef]

Appl. Phys. A

W. Zhu, X. Zhao, B. Gong, L. Liu, B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102, 147–151 (2011).
[CrossRef]

Appl. Phys. Lett.

T. V. Teperik, F. J. García de Abajo, V. V. Popov, M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, J.-L. Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett. 85, 194 (2004).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS

J. Yang, Z. Shen, “A thin and broadband absorber using double-square loops,” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 6, 388–391 (2007).
[CrossRef]

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

A. Fallahi, A. Yahaghi, H.-R. Benedickter, H. Abiri, M. Shahabadi, C. Hafner, “Thin wideband radar absorbers,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 58, 4051–4058 (2010).
[CrossRef]

J. Computational Theoretical Nanosci.

A. F. Arya, M. Mishrikey, C. Hafner, R. Vahldieck, “Radar absorbers based on frequency selective surfaces on perforated substrates,” J. Computational Theoretical Nanosci. 5, 704–710 (2008).
[CrossRef]

J. Opt.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13, 075005 (2011).
[CrossRef]

J. Opt. Soc. Am. B

Nano Lett.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Nat. Commun.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Nat. Mater.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics

T. V. Teperik, F. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[CrossRef]

Nature

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Optics Lett.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Optics Lett. 37, 154–156 (2012).
[CrossRef]

Photonics and Nanostructures - Fundamentals and Applications

P. V. Tuong, V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, Y. P. Lee, “Perfect-absorber metamaterial based on flower-shaped structure,” Photonics and Nanostructures - Fundamentals and Applications 11, 89–94 (2013).
[CrossRef]

Photonics and Nanostructures Fundamentals and Applications

Y. Cheng, H. Yang, Z. Cheng, B. Xiao, “A planar polarization-insensitive metamaterial absorber,” Photonics and Nanostructures Fundamentals and Applications 9, 8–14 (2011).
[CrossRef]

Phys. Rev. B

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[CrossRef]

B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009).
[CrossRef]

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

T. V. Teperik, V. V. Popov, F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005).
[CrossRef]

Phys. Rev. Lett.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Prog. Electromagn. Res.

H. Oraizi, A. Abdolali, N. Vaseghi, “Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section,” Prog. Electromagn. Res. 101, 323–337 (2010).
[CrossRef]

Prog. Electromagn. Res. B

R. F. Huang, Z. W. Li, L. B. Kong, L. Liu, S. Matitsine, “Analysis and design of an ultra-thin metamaterial absorber,” Prog. Electromagn. Res. B 14, 407–429 (2009).
[CrossRef]

Other

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

http://www.comsol.com .

C. A. Balanis, Antenna Theory: Analysis and Designs (John Wiley & Sons, Inc., NY, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of planar metamaterial with lattice of metallic patches separated from the ground plane by absorptive layer.

Fig. 2
Fig. 2

(a) Absorption spectra for different patch length l: 12.2 mm (red curve), 13.2 mm (blue curve), and 15.2 mm (green curve). The period of the structure is l + Δl with patch-to-patch separation Δl = 2 mm and absorptive layer thickness s = 0.3 mm. (b) Near-field distribution Ez in the first and third resonant modes calculated along the line z = 0 and y = 0. (c) Resonant frequency as a function of patch-to-patch separation Δl for the first and second resonance of the spectra in Fig. 2(a), l = 15.2 mm. The points are connected by black dashed lines for eyes guidance. Blue dotted curves are obtained from Eq. (2)

Fig. 3
Fig. 3

(a) Schematically charge distribution in TM mode induced by normally incident plane wave. (b) Resonant RLC equivalent circuit

Fig. 4
Fig. 4

(a) Absorption spectra of the first TM mode (n = 1, m = 0) and (b) next higher order TM mode (n = 3, m = 0) for different values of ohmic losses in absorptive layer introduced through ε″. Inset: half width of the resonance Γ as a function of imaginary part of dielectric function ε″ of absorptive layer. Green points correspond to the value of radiative damping γ extracted at ε″ = 0 and the total decay rate Γ at the optimal ε″, respectively. l = 15.2 mm and s = 0.3 mm.

Fig. 5
Fig. 5

Radiative damping γ (dashed curves) and total damping Γ (solid curves) of the first resonant TM mode as a function of patch length l (top axis) and absorptive layer thickness s (bottom axis). The points are connected by dashed lines for eyes guidance. Black curves: l = 15.2, Δl = 2 mm. Red curves: s = 0.3 mm, Δl = 2 mm. The grey/rose domains are characterized by absorption higher than 95%.

Fig. 6
Fig. 6

Absorption spectra obtained from RLC model (green solid line) and numerical (black dashed line) calculations for (a) the first and (b) the next higher order TM mode. Inset: real (red curve) and imaginary (blue curve) parts of the effective impedance of the metasurface Zeff as a function of frequency.

Fig. 7
Fig. 7

Absorption spectra of absorptive layer with ε = 4.4 + i0.088 squeezed under the periodic arrangement of patches of different geometry: square patch with l = 15.2 mm, s = 0.3 mm, Δl = 2 mm (black curve), circular patch with diameter d = 14.8 mm and s = 0.3 mm, and patch-to-patch separation 2 mm (red curve), square hole with side size l = 12 mm, s = 3 mm, and period 16.6 mm (blue curve), circular hole with diameter d = 16 mm, s = 3 mm, and period 19 mm (green curve).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

k = ω ε / c .
k n m = ω m n ε / c = π l n 2 + m 2 ,
Z = R + i ω L 1 ω 2 L C + i ω R C .
Z = 1 C ( 2 ν + i ω ) ( ω 0 2 ω 2 + 2 i ω ν ) ,
Z = 1 2 C i ( ω 0 ω + i ν ) ,
Z eff = | β | 2 2 C i ( ω 0 ω + i ν ) ,
r = Z eff Z 0 Z eff + Z 0 .
= | r | 2 = ( ω 0 ω ) 2 + ( ν γ ) 2 ( ω 0 ω ) 2 + ( ν + γ ) 2 ,
𝒜 = 1 = 4 ν γ ( ω 0 ω ) 2 + ( ν + γ ) 2 ,
γ = | β | 2 / 2 C Z 0
= ( ν γ ) 2 ( ν + γ ) 2 ,
𝒜 = 4 ν γ ( ν + γ ) 2 ,
ν = γ
R 2 L = | β | 2 2 C Z 0 .

Metrics