Abstract

In this work, we numerically investigate the radiative properties of metamaterial nanostructures made of two-dimensional tungsten gratings on a thin dielectric spacer and an opaque tungsten film from UV to mid-infrared region as potential selective solar absorbers. The metamaterial absorber with single-sized tungsten patches exhibits high absorptance in the visible and near-infrared region due to several mechanisms such as surface plasmon polaritons, magnetic polaritons, and intrinsic bandgap absorption of tungsten. Geometric effects on the resonance wavelengths and the absorptance spectra are studied, and the physical mechanisms are elucidated in detail. The absorptance could be further enhanced in a broader spectral range with double-sized metamaterial absorbers. The total solar absorptance of the optimized metamaterial absorbers at normal incidence could be more than 88%, while the total emittance is less than 3% at 100°C, resulting in total photon-to-heat conversion efficiency of 86% without any optical concentration. Moreover, the metamaterial solar absorbers exhibit quasi-diffuse behaviors as well as polarization independence. The results here will facilitate the design of novel highly efficient solar absorbers to enhance the performance of various solar energy conversion systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
    [CrossRef]
  2. C. M. Watts, X. Liu, W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120, OP181 (2012).
    [CrossRef] [PubMed]
  3. A. Isenstadt, J. Xu, “Subwavelength metal optics and antireflection,” Electron. Mater. Lett. 9(2), 125–132 (2013).
    [CrossRef]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  5. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
    [CrossRef]
  6. B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
    [CrossRef]
  7. D. Yu. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
    [CrossRef]
  8. Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, Polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B 27(3), 498–504 (2010).
    [CrossRef]
  9. X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [CrossRef] [PubMed]
  10. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [CrossRef]
  11. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
    [CrossRef] [PubMed]
  12. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
    [CrossRef] [PubMed]
  13. M. G. Nielsen, A. Pors, O. Albrektsen, S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
    [CrossRef] [PubMed]
  14. J. Dai, F. Ye, Y. Chen, M. Muhammed, M. Qiu, M. Yan, “Light absorber based on nano-spheres on a substrate reflector,” Opt. Express 21(6), 6697–6706 (2013).
    [CrossRef] [PubMed]
  15. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [CrossRef] [PubMed]
  16. C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. Lee, M. L. Brongersma, S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
    [CrossRef]
  17. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill,2007).
  18. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [CrossRef] [PubMed]
  19. I. Puscasu, W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
    [CrossRef]
  20. B. J. Lee, L. P. Wang, Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
    [CrossRef] [PubMed]
  21. L. P. Wang, Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
    [CrossRef]
  22. L. P. Wang, Z. M. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
    [CrossRef]
  23. B. Zhao, L. P. Wang, Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
    [CrossRef]
  24. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
    [CrossRef]
  25. J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
    [CrossRef]
  26. Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [CrossRef]
  27. C. Wu, G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
    [CrossRef] [PubMed]
  28. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [CrossRef] [PubMed]
  29. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
    [CrossRef] [PubMed]
  30. K. R. Chen, R. Adato, H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [CrossRef] [PubMed]
  31. H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
    [CrossRef]
  32. N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, L. Deng, “Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers,” Opt. Lett. 38(7), 1125–1127 (2013).
    [CrossRef] [PubMed]
  33. G. Dayal, S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
    [CrossRef]
  34. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [CrossRef] [PubMed]
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press,1998).
  36. L. P. Wang, Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(S2Suppl 2), A126–A135 (2011).
    [CrossRef] [PubMed]
  37. L. Wang, Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” JOSA B 27(12), 2595–2604 (2010).
    [CrossRef]
  38. Air Mass 1.5 Spectra, American Society for Testing and Materials (ASTM), Available from: http://rredc.nrel.gov/solar/spectra/am1.5/

2013 (7)

A. Isenstadt, J. Xu, “Subwavelength metal optics and antireflection,” Electron. Mater. Lett. 9(2), 125–132 (2013).
[CrossRef]

L. P. Wang, Z. M. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
[CrossRef]

B. Zhao, L. P. Wang, Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[CrossRef]

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. Lee, M. L. Brongersma, S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[CrossRef]

G. Dayal, S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
[CrossRef]

J. Dai, F. Ye, Y. Chen, M. Muhammed, M. Qiu, M. Yan, “Light absorber based on nano-spheres on a substrate reflector,” Opt. Express 21(6), 6697–6706 (2013).
[CrossRef] [PubMed]

N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, L. Deng, “Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers,” Opt. Lett. 38(7), 1125–1127 (2013).
[CrossRef] [PubMed]

2012 (10)

C. Wu, G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[CrossRef] [PubMed]

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[CrossRef] [PubMed]

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[CrossRef] [PubMed]

M. G. Nielsen, A. Pors, O. Albrektsen, S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[CrossRef] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

K. R. Chen, R. Adato, H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[CrossRef] [PubMed]

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[CrossRef]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

L. P. Wang, Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[CrossRef]

C. M. Watts, X. Liu, W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120, OP181 (2012).
[CrossRef] [PubMed]

2011 (7)

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

L. P. Wang, Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(S2Suppl 2), A126–A135 (2011).
[CrossRef] [PubMed]

2010 (5)

L. Wang, Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” JOSA B 27(12), 2595–2604 (2010).
[CrossRef]

D. Yu. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, Polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B 27(3), 498–504 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

2009 (2)

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[CrossRef]

2008 (4)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
[CrossRef]

B. J. Lee, L. P. Wang, Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[CrossRef] [PubMed]

I. Puscasu, W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[CrossRef]

Abbas, M. N.

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Adato, R.

K. R. Chen, R. Adato, H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[CrossRef] [PubMed]

Albrektsen, O.

Altug, H.

K. R. Chen, R. Adato, H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[CrossRef] [PubMed]

An, X.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[CrossRef]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Averitt, R.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
[CrossRef]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Azad, A. K.

D. Yu. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Baxter, J.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Bent, S. F.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. Lee, M. L. Brongersma, S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[CrossRef]

Bian, Z.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
[CrossRef]

Bouchon, P.

Bozhevolnyi, S. I.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Brongersma, M. L.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. Lee, M. L. Brongersma, S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[CrossRef]

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Chang, Y. C.

Chen, G.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Chen, K. R.

K. R. Chen, R. Adato, H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[CrossRef] [PubMed]

Chen, S.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[CrossRef]

Chen, Y.

J. Dai, F. Ye, Y. Chen, M. Muhammed, M. Qiu, M. Yan, “Light absorber based on nano-spheres on a substrate reflector,” Opt. Express 21(6), 6697–6706 (2013).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

Cheng, C. W.

Cheng, D.

Cheng, H.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[CrossRef]

Chilkoti, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Chiu, C. W.

Ciracì, C.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Dai, J.

Danielson, D.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Dayal, G.

G. Dayal, S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
[CrossRef]

Deng, L.

Dresselhaus, M. S.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
[CrossRef]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Fedorov, A. G.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Fisher, T. S.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Gu, C.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[CrossRef]

Hägglund, C.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. Lee, M. L. Brongersma, S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[CrossRef]

Haïdar, R.

Hao, J.

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, Polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B 27(3), 498–504 (2010).
[CrossRef]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Hill, R. T.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Isenstadt, A.

A. Isenstadt, J. Xu, “Subwavelength metal optics and antireflection,” Electron. Mater. Lett. 9(2), 125–132 (2013).
[CrossRef]

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, Polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B 27(3), 498–504 (2010).
[CrossRef]

John, J.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Jones, C. W.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Koechlin, C.

Kortshagen, U.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Koschny, T.

B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[CrossRef]

Kumar, A.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Lai, K. T.

Landy, N. I.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Lee, B. J.

Lee, H.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. Lee, M. L. Brongersma, S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[CrossRef]

Li, J.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[CrossRef]

Liu, X.

C. M. Watts, X. Liu, W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120, OP181 (2012).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Maginn, E.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Manthiram, A.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Milder, A.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Mock, J. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Moreau, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Muhammed, M.

Neuner, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Nielsen, M. G.

Nozik, A.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

O’Hara, J. F.

D. Yu. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Padilla, W.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
[CrossRef]

Padilla, W. J.

C. M. Watts, X. Liu, W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120, OP181 (2012).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Pardo, F.

Pelouard, J. L.

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
[CrossRef]

Pors, A.

Puscasu, I.

I. Puscasu, W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[CrossRef]

Qiu, M.

J. Dai, F. Ye, Y. Chen, M. Muhammed, M. Qiu, M. Yan, “Light absorber based on nano-spheres on a substrate reflector,” Opt. Express 21(6), 6697–6706 (2013).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Ramakrishna, S. A.

G. Dayal, S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
[CrossRef]

Rolison, D. R.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Ruiz, R.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. Lee, M. L. Brongersma, S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Sands, T.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Savoy, S.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Schaich, W. L.

I. Puscasu, W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[CrossRef]

Shchegolkov, D. Yu.

D. Yu. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Shi, L.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Shih, M. H.

Shollh, D.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
[CrossRef]

Shvets, G.

C. Wu, G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[CrossRef] [PubMed]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Simakov, E. I.

D. Yu. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Smith, D. R.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Soukoulis, C. M.

B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
[CrossRef]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
[CrossRef]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Thomann, I.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. Lee, M. L. Brongersma, S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[CrossRef]

Tian, J.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[CrossRef]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Wang, B.

B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[CrossRef]

Wang, J.

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Wang, L.

L. Wang, Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” JOSA B 27(12), 2595–2604 (2010).
[CrossRef]

Wang, L. P.

L. P. Wang, Z. M. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
[CrossRef]

B. Zhao, L. P. Wang, Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[CrossRef]

L. P. Wang, Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[CrossRef]

L. P. Wang, Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(S2Suppl 2), A126–A135 (2011).
[CrossRef] [PubMed]

B. J. Lee, L. P. Wang, Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[CrossRef] [PubMed]

Wang, Q.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120, OP181 (2012).
[CrossRef] [PubMed]

Weng, X.

Wiley, B. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Wu, C.

C. Wu, G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[CrossRef] [PubMed]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Wuo, Y.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Xie, J.

Xu, J.

A. Isenstadt, J. Xu, “Subwavelength metal optics and antireflection,” Electron. Mater. Lett. 9(2), 125–132 (2013).
[CrossRef]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Yan, M.

J. Dai, F. Ye, Y. Chen, M. Muhammed, M. Qiu, M. Yan, “Light absorber based on nano-spheres on a substrate reflector,” Opt. Express 21(6), 6697–6706 (2013).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

Yang, H.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[CrossRef]

Ye, F.

Ye, Y. Q.

Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, Polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B 27(3), 498–504 (2010).
[CrossRef]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Zeltzer, G.

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. Lee, M. L. Brongersma, S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[CrossRef]

Zhang, N.

Zhang, X.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
[CrossRef]

Zhang, Z. M.

L. P. Wang, Z. M. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
[CrossRef]

B. Zhao, L. P. Wang, Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[CrossRef]

L. P. Wang, Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[CrossRef]

L. P. Wang, Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(S2Suppl 2), A126–A135 (2011).
[CrossRef] [PubMed]

L. Wang, Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” JOSA B 27(12), 2595–2604 (2010).
[CrossRef]

B. J. Lee, L. P. Wang, Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[CrossRef] [PubMed]

Zhao, B.

B. Zhao, L. P. Wang, Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[CrossRef]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Zhou, P.

Zollars, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

ACS Nano (1)

K. R. Chen, R. Adato, H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[CrossRef] [PubMed]

Adv. Mater. (2)

C. M. Watts, X. Liu, W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120, OP181 (2012).
[CrossRef] [PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

L. P. Wang, Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

I. Puscasu, W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[CrossRef]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Electron. Mater. Lett. (1)

A. Isenstadt, J. Xu, “Subwavelength metal optics and antireflection,” Electron. Mater. Lett. 9(2), 125–132 (2013).
[CrossRef]

Energy Environ. Sci. (1)

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[CrossRef]

Int. J. Heat Mass Transfer (1)

B. Zhao, L. P. Wang, Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
[CrossRef]

J. Appl. Phys. (1)

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Heat Transfer (1)

L. P. Wang, Z. M. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
[CrossRef]

J. Opt. (2)

G. Dayal, S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
[CrossRef]

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[CrossRef]

JOSA B (2)

L. Wang, Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” JOSA B 27(12), 2595–2604 (2010).
[CrossRef]

Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, Polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B 27(3), 498–504 (2010).
[CrossRef]

Nano Lett. (2)

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. Lee, M. L. Brongersma, S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett. 13(7), 3352–3357 (2013).
[CrossRef]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Nat Commun (1)

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Nature (1)

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. B (4)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103R (2008).
[CrossRef]

B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[CrossRef]

D. Yu. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Phys. Rev. Lett. (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Other (3)

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill,2007).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press,1998).

Air Mass 1.5 Spectra, American Society for Testing and Materials (ASTM), Available from: http://rredc.nrel.gov/solar/spectra/am1.5/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of proposed single-sized metamaterial solar absorbers made of 2D periodic tungsten gratings with period Λ, patch width w and grating height h, on a thin SiO2 spacer with thickness t and an opaque tungsten thin film. The electromagnetic wave is incident at a polar angle θ, polarization angle ψ, and azimuthal angle ϕ. The structure is assumed to be geometrically symmetric in the x and y directions, and ϕ is taken as 0° for simplicity. (b) Schematic of double-sized metamaterial solar absorbers with tungsten patches of different widths w1 and w2, and period Λ = 2 Λ Tungsten patches with the same size are arranged diagonally and each patch is centered in its quadrant.

Fig. 2
Fig. 2

Spectral absorptance of the single-sized metamaterial solar absorber at normal incidence as a function of (a) tungsten patch width w, (b) grating period Λ, (c) grating height h, and (d) spacer thickness t. The base values of the geometric parameters are Λ = 600 nm, w = 300 nm, and h = t = 60 nm. The broadband high absorption in the spectral region from 0.3 μm to 2 μm is due to several physical mechanisms including SPP, CMP, intrinsic loss of tungsten, and MP.

Fig. 3
Fig. 3

Contour plots of electromagnetic field distribution in the x-z cross-sectional view at the middle of the tungsten patches, when (a) MP is excited at λ = 1.75 μm and (b) CMP is excited at λ = 0.78 μm for the single-sized metamaterial absorber with Λ = 600 nm, w = 300 nm, h = 120 nm, and t = 60 nm. Two unit cells are shown and different layers are delineated. The contour represents the logarithmic values of magnitude square of normalized magnetic field to the incidence, while the arrows indicate the electric field vectors.

Fig. 4
Fig. 4

The resonance wavelengths of MP and CMP modes are summarized in (a−d) with varied geometric parameters. The solid curves are predicted geometry-dependent resonance wavelengths from the analytical LC model for the MP mode.

Fig. 5
Fig. 5

(a) Spectral normal absorptance in the spectral region from 0.4 μm to 4 μm for a double-sized metamaterial solar absorber with tungsten patch widths of w1 = 250 nm and w2 = 300 nm, in comparison with that of single-sized metamaterial solar absorbs with w1 or w2. Other geometric parameters are the same: Λ = 600 nm, h = 150 nm, and t = 60 nm. The inset depicts the arrangement of the tungsten patches for the double-sized absorbers. (b) Spectral normal emittance of single-sized and double-sized metamaterial solar absorbers in the longer wavelength region from 4 μm to 20 μm.

Fig. 6
Fig. 6

Electromagnetic field distributions inside the double-sized metamaterial solar absorber at (a) λ1 = 1.6 μm and (b) λ2 = 1.8 μm, which are MP resonance wavelengths of the single-sized metamaterial absorbers with w1 = 250 nm or w2 = 300 nm, respectively. The MPs could occur inside the double-sized metamaterial absorbers at both resonance wavelengths under the tungsten patches with different widths of w1 = 250 nm and w2 = 300 nm.

Fig. 7
Fig. 7

Spectral absorptance of the double-sized metamaterial solar absorber as a function of polar angle θ at several representative wavelengths of λ = 0.6 μm, 1.2 μm and 1.8 μm for (a) TE and (b) TM polarized waves.

Fig. 8
Fig. 8

Contour plot of the spectral absorptance of the double-sized metamaterial solar absorber as a function of wavelength λ and polarization angle ψ at normal incidence (θ = 0°). The metamaterial absorber shows polarization independence.

Fig. 9
Fig. 9

Comparison on the spectral normal absorptance between the double-sized metamaterial absorber and multi-sized ones with three or four different tungsten patch widths. The insets depict how to arrange the different patches such that they are diagonally symmetric. The patch width values are: w1 = 250 nm, w2 = 300 nm, w3 = 350 nm, and w4 = 400 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Z total = L m + L k 1 ω 2 C g ( L m + L k ) 2 ω 2 C m +( L m + L k )
λ MP 2π c 0 ( L m + L k ) C m
α total, N = 0.3μm 4μm α λ,N I AM1.5 (λ)dλ 0.3μm 4μm I AM1.5 (λ)dλ
ε total,N = 0.3μm 20μm ε λ,N I BB (λ, T A )dλ 0.3μm 20μm I BB (λ, T A )dλ
η= α total,N G ε total,N (σ T A 4 σ T sky 4 ) G

Metrics