Abstract

We design silicon membranes with nanohole structures with optimized complex unit cells that maximize broadband absorption. We fabricate the optimized design and measure the optical absorption. We demonstrate an experimental broadband absorption about 3.5 times higher than an equally-thick thin film.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
    [CrossRef] [PubMed]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  3. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
    [PubMed]
  4. M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21(S2Suppl 2), A268–A275 (2013).
    [CrossRef] [PubMed]
  5. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
    [CrossRef] [PubMed]
  6. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
    [CrossRef]
  7. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35(20), 3378–3380 (2010).
    [CrossRef] [PubMed]
  8. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011).
    [CrossRef] [PubMed]
  9. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett. 36(10), 1884–1886 (2011).
    [CrossRef] [PubMed]
  10. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4Suppl 4), A841–A850 (2011).
    [CrossRef] [PubMed]
  11. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
    [CrossRef]
  12. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
    [CrossRef]
  13. C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(S1), A125–A132 (2012).
    [CrossRef] [PubMed]
  14. A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
    [CrossRef]
  15. V. Ganapati, O. D. Miller, and E. Yablonovitch, “Spontaneous symmetry breaking in the optimization of subwavelength solar cell textures for light trapping,” in Photovoltaic Specialists Conference (PVSC),201238th IEEE, 2012), 001572–001576.
    [CrossRef]
  16. M. Li, X. Hu, Z. Ye, K. M. Ho, J. Cao, and M. Miyawaki, “Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation,” Opt. Lett. 31(23), 3498–3500 (2006).
    [CrossRef] [PubMed]
  17. D. F. Edwards, “Silicon (Si),” in Handbook of optical constants of solids, E.D.Palik, ed. (Academic, 1985).
  18. ASTM, “Air Mass 1.5 Spectra”, http://rredc.nrel.gov/solar/spectra/am1.5 .
  19. S. E. Han and G. Chen, “Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
    [CrossRef] [PubMed]
  20. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express 16(17), 13090–13103 (2008).
    [CrossRef] [PubMed]
  21. K. Sakoda, Optical properties of photonic crystals, 2nd ed. (Springer, 2004).
  22. Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
    [CrossRef]
  23. C. Lin, L. J. Martínez, and M. L. Povinelli, Fabrication of transferrable, fully-suspended silicon photonic crystal membranes exhibiting vivid structural color and high-Q guided resonance, submitted.
  24. M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express 13(7), 2487–2502 (2005).
    [CrossRef] [PubMed]
  25. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
    [CrossRef] [PubMed]
  26. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [CrossRef]
  27. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
    [CrossRef]
  28. Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109(17), 173901 (2012).
    [CrossRef] [PubMed]
  29. G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21(S3), A515–A527 (2013).
    [CrossRef]
  30. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals:Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

2013 (2)

2012 (6)

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(S1), A125–A132 (2012).
[CrossRef] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
[CrossRef]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109(17), 173901 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35(20), 3378–3380 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (3)

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express 16(17), 13090–13103 (2008).
[CrossRef] [PubMed]

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[CrossRef]

2006 (2)

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[CrossRef]

M. Li, X. Hu, Z. Ye, K. M. Ho, J. Cao, and M. Miyawaki, “Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation,” Opt. Lett. 31(23), 3498–3500 (2006).
[CrossRef] [PubMed]

2005 (1)

2002 (1)

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Asatryan, A. A.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
[CrossRef]

Atwater, H. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Bao, H.

Bégin, G.

Botten, L. C.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
[CrossRef]

Burresi, M.

Cao, J.

Chen, G.

S. E. Han and G. Chen, “Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[CrossRef] [PubMed]

Chen, L.

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

Chutinan, A.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[CrossRef]

Crozier, K. B.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[CrossRef]

de Sterke, C. M.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
[CrossRef]

Demir, H. V.

Digonnet, M.

Dossou, K. B.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
[CrossRef]

Drouard, E.

Du, Q. G.

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109(17), 173901 (2012).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[CrossRef]

Fan, S. H.

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Favuzzi, P. A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Gomard, G.

Han, S. E.

S. E. Han and G. Chen, “Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[CrossRef] [PubMed]

Ho, K. M.

Hu, X.

Huang, N.

Joannopoulos, J. D.

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

John, S.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[CrossRef]

Johnson, S. G.

Kam, C. H.

Kawakami, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Kilic, O.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express 16(17), 13090–13103 (2008).
[CrossRef] [PubMed]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[CrossRef]

Kim, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[CrossRef]

Kimerling, L. C.

Kino, G.

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Li, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Li, M.

Lin, C.

Liu, Y.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Lousse, V.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[CrossRef]

Ma, Z.

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

Martínez, L. J.

C. Lin, L. J. Martínez, and M. L. Povinelli, Fabrication of transferrable, fully-suspended silicon photonic crystal membranes exhibiting vivid structural color and high-Q guided resonance, submitted.

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

McPhedran, R. C.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
[CrossRef]

Meng, X.

Michel, J.

Miyawaki, M.

Noda, S.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Oskooi, A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Pang, H.

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

Peretti, R.

Polman, A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Poulton, C. G.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
[CrossRef]

Povinelli, M. L.

Prasciolu, M.

Pratesi, F.

Qiang, Z.

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109(17), 173901 (2012).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Riboli, F.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Ruan, X.

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Seassal, C.

Sheng, X.

Shigeta, H.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Skorobogatiy, M.

Solgaard, O.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express 16(17), 13090–13103 (2008).
[CrossRef] [PubMed]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[CrossRef]

Sturmberg, B. C. P.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
[CrossRef]

Sun, X. W.

Talneau, A.

Tanaka, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Tormen, M.

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Vynck, K.

Wiersma, D. S.

Yang, H.

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

Ye, Z.

Yu, H. Y.

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109(17), 173901 (2012).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Zhou, W.

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101(17), 173902 (2012).
[CrossRef]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

Nano Lett. (2)

S. E. Han and G. Chen, “Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Opt. Express (9)

M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21(S2Suppl 2), A268–A275 (2013).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011).
[CrossRef] [PubMed]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(S1), A125–A132 (2012).
[CrossRef] [PubMed]

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4Suppl 4), A841–A850 (2011).
[CrossRef] [PubMed]

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express 16(17), 13090–13103 (2008).
[CrossRef] [PubMed]

M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express 13(7), 2487–2502 (2005).
[CrossRef] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21(S3), A515–A527 (2013).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[CrossRef]

Phys. Rev. B (3)

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73(11), 115126 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109(17), 173901 (2012).
[CrossRef] [PubMed]

Other (6)

K. Sakoda, Optical properties of photonic crystals, 2nd ed. (Springer, 2004).

C. Lin, L. J. Martínez, and M. L. Povinelli, Fabrication of transferrable, fully-suspended silicon photonic crystal membranes exhibiting vivid structural color and high-Q guided resonance, submitted.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals:Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

D. F. Edwards, “Silicon (Si),” in Handbook of optical constants of solids, E.D.Palik, ed. (Academic, 1985).

ASTM, “Air Mass 1.5 Spectra”, http://rredc.nrel.gov/solar/spectra/am1.5 .

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Spontaneous symmetry breaking in the optimization of subwavelength solar cell textures for light trapping,” in Photovoltaic Specialists Conference (PVSC),201238th IEEE, 2012), 001572–001576.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Silicon nanohole structures with (a) simple periodic and (b) complex unit cell geometries. (c) Calculated F.O.M.s as a function of the unit cell length in structures with random (blue) and optimized (red) complex unit cells. The F.O.M.s for the simple periodic unit cell case and an equally-thick thin film are also shown for reference.

Fig. 2
Fig. 2

Nanohole patterns with unit cells containing simple periodic (a), average complex (b), and optimized complex (c) configurations of nanoholes. A total of 9 unit cells are shown for each configuration. Red dashed lines are the borders between unit cells. (d – f) show the corresponding SEM images of the fabricated patterns. The white square denotes a unit cell and the scale bars are 200 nm.

Fig. 3
Fig. 3

Measured (left panel) and simulated (right panel) reflectance, transmittance, and absorptance spectra of nanohole structures with simple periodic (red), average complex (blue), and optimized complex (green) unit cell geometries, as shown in Fig. 2. The spectra for an equally-thick thin film are also shown for reference (gray dashed line).

Fig. 4
Fig. 4

Real space configurations (a – c) and spatial Fourier spectra (d – f) of nanohole structures with simple periodic ((a) and (d)), average complex ((b) and (e)), and optimized complex ((c) and (f)) unit cell geometries.

Fig. 5
Fig. 5

Incidence angle dependence of the F.O.M. for nanohole structures with an optimized complex unit cell geometry (red), optimized simple unit cell geometry (green), and an equally-thick thin film (blue) for p (a) and s (b) polarized incident light, as well as the average F.O.M. between two polarizations (c).

Fig. 6
Fig. 6

Schematic of specular and diffractive reflection and transmission processes in a one-dimensional periodically patterned slab.

Fig. 7
Fig. 7

(a) Angle-averaged actual (black) and specular (red) absorptance spectra for the optimized complex unit cell geometry, for an incident beam angular spread up to 10 degrees. The blue arrows indicate the diffraction thresholds wavelengths. Right of the dashed line is our wavelength range of interest. (b) Angle-averaged F.O.M.s for three different unit cell geometries, as a function of the incidence beam angular spread.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F . O . M . = λ min λ max I ( λ ) A ( λ ) λ d λ λ min λ max I ( λ ) λ d λ .

Metrics