Abstract

We present a novel approach for modeling the reflectance, transmittance and absorption depth profile of thin-film multilayer structures such as solar cells. Our model is based on the net-radiation method adapted for coherent calculations and is highly flexible while using a simple algorithm. We demonstrate that as a result arbitrary multilayer structures with coherent, partly coherent and incoherent layers can be simulated more accurately at much lower computational cost.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics (Pearson Education, 2002).
  2. H. A. Macleod, Thin-Film Optical Filters (Taylor and Francis Group, 2010).
  3. M. Born and E. Wolf, Principles of Optics (Pergamon Press Ltd., 1980).
  4. C. C. Katsidis, D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978–3987 (2002).
    [CrossRef] [PubMed]
  5. E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt. 44(35), 7532–7539 (2005).
    [CrossRef] [PubMed]
  6. J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D Appl. Phys. 33(24), 3139–3145 (2000).
    [CrossRef]
  7. M. C. Troparevsky, A. S. Sabau, A. R. Lupini, Z. Zhang, “Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference,” Opt. Express 18(24), 24715–24721 (2010).
    [CrossRef] [PubMed]
  8. R. Siegel, “Net radiation method for transmission through partially transparent plates,” Sol. Energy 15(3), 273–276 (1973).
    [CrossRef]
  9. R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, R. J. C. van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
    [CrossRef]

2010 (2)

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, R. J. C. van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

M. C. Troparevsky, A. S. Sabau, A. R. Lupini, Z. Zhang, “Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference,” Opt. Express 18(24), 24715–24721 (2010).
[CrossRef] [PubMed]

2005 (1)

2002 (1)

2000 (1)

J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D Appl. Phys. 33(24), 3139–3145 (2000).
[CrossRef]

1973 (1)

R. Siegel, “Net radiation method for transmission through partially transparent plates,” Sol. Energy 15(3), 273–276 (1973).
[CrossRef]

Centurioni, E.

Goud, J. M.

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, R. J. C. van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

Katsidis, C. C.

Lupini, A. R.

Prentice, J. S. C.

J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D Appl. Phys. 33(24), 3139–3145 (2000).
[CrossRef]

Sabau, A. S.

Santbergen, R.

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, R. J. C. van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

Siapkas, D. I.

Siegel, R.

R. Siegel, “Net radiation method for transmission through partially transparent plates,” Sol. Energy 15(3), 273–276 (1973).
[CrossRef]

Troparevsky, M. C.

van Roosmalen, J. A. M.

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, R. J. C. van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

van Zolingen, R. J. C.

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, R. J. C. van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

Zeman, M.

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, R. J. C. van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

Zhang, Z.

Appl. Opt. (2)

J. Phys. D Appl. Phys. (1)

J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D Appl. Phys. 33(24), 3139–3145 (2000).
[CrossRef]

Opt. Express (1)

Sol. Energy (1)

R. Siegel, “Net radiation method for transmission through partially transparent plates,” Sol. Energy 15(3), 273–276 (1973).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, R. J. C. van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

Other (3)

E. Hecht, Optics (Pearson Education, 2002).

H. A. Macleod, Thin-Film Optical Filters (Taylor and Francis Group, 2010).

M. Born and E. Wolf, Principles of Optics (Pergamon Press Ltd., 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic multilayer structure, with numbering convention of interfaces, layers and electric field strength.

Fig. 2
Fig. 2

Simulated (area) and measured (symbols) R, A and T of a 1 μm ZnO:Al film on glass. The inset shows T in more detail. (a) single coherent simulation (b) average of three coherent simulations (the inset shows the individual simulations with φ = 0°, 120° and 240° and their average).

Fig. 3
Fig. 3

Deviation from the exact solution as a function of the number of coherent simulations averaged. The existing method of averaging with random φ (red line) and our new method of averaging with equidistant φ (green line) are compared.

Fig. 4
Fig. 4

(a) Absorptance and (b) absorption depth profile for of the absorber layer of an a-Si:H solar cell for various degrees of absorber layer coherence, indicated by visibility V. The lines represent V = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

{ E ia = τ i1 E (i1)d E ib = r i> E ia + t i< E ic E ic = τ i E (i+1)b E id = t i> E ia + r i< E ic .
τ i = e i δ i ,
δ i =2π N i d i /λ ,
P i =( E i H i * ) ,
E i = E ia + E ib = E ic + E id ,
H i = N 0 N i1 ( E ia E ib )= N 0 N i ( E id E ic ) ,
R=1 P 1 A i = P i P i+1 T= P I .
δ i (t)=2π N i d i /λ+φ(t) .

Metrics