Abstract

Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
    [CrossRef]
  2. H. R. Stuart, D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998).
    [CrossRef]
  3. H. R. Stuart, D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
    [CrossRef]
  4. D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  5. S. P. Sundararajan, N. K. Grady, N. Mirin, N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–30 (2008).
    [CrossRef] [PubMed]
  6. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  7. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
    [CrossRef]
  8. K. R. Catchpole, S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315–318 (2006).
    [CrossRef]
  9. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
    [CrossRef]
  10. S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 1–8 (2007).
    [CrossRef]
  11. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
    [CrossRef]
  12. K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–800 (2008).
    [CrossRef] [PubMed]
  13. K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
  14. C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
    [CrossRef]
  15. K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
    [CrossRef]
  16. Y. A. Akimov, W. S. Koh, K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17, 10195–205 (2009).
    [CrossRef] [PubMed]
  17. F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
    [CrossRef]
  18. S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
    [CrossRef]
  19. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
    [CrossRef]
  20. F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 1–3 (2010).
    [CrossRef]
  21. Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
    [CrossRef]
  22. F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207–20 (2010).
    [CrossRef] [PubMed]
  23. F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19, A146–56 (2011).
    [CrossRef] [PubMed]
  24. W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 693–698 (2011).
    [CrossRef]
  25. S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D: Appl. Phys. 44, 185101 (2011).
    [CrossRef]
  26. Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 19, 917–926 (2011).
    [CrossRef]
  27. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
    [CrossRef]
  28. A. Paris, A. Vaccari, A. Calà Lesina, E. Serra, L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cells,” plasmonics (2012).
    [CrossRef]
  29. T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology 23, 085202 (2012).
    [CrossRef] [PubMed]
  30. Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, M. A. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
    [CrossRef]
  31. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
    [CrossRef]

2012 (2)

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology 23, 085202 (2012).
[CrossRef] [PubMed]

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, M. A. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[CrossRef]

2011 (5)

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19, A146–56 (2011).
[CrossRef] [PubMed]

W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 693–698 (2011).
[CrossRef]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D: Appl. Phys. 44, 185101 (2011).
[CrossRef]

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 19, 917–926 (2011).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

2010 (4)

F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 1–3 (2010).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207–20 (2010).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

2009 (4)

Y. A. Akimov, W. S. Koh, K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17, 10195–205 (2009).
[CrossRef] [PubMed]

F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

2008 (4)

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–800 (2008).
[CrossRef] [PubMed]

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

S. P. Sundararajan, N. K. Grady, N. Mirin, N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–30 (2008).
[CrossRef] [PubMed]

2007 (3)

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 1–8 (2007).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

2006 (3)

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

K. R. Catchpole, S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315–318 (2006).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

2005 (1)

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

1998 (2)

H. R. Stuart, D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998).
[CrossRef]

H. R. Stuart, D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

1996 (1)

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

Akimov, Y. A.

Alaverdyan, Y.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Atwater, H. A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Bagnall, D. M.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

Beck, F. J.

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19, A146–56 (2011).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D: Appl. Phys. 44, 185101 (2011).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 1–3 (2010).
[CrossRef]

F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[CrossRef]

Calà Lesina, A.

A. Paris, A. Vaccari, A. Calà Lesina, E. Serra, L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cells,” plasmonics (2012).
[CrossRef]

Calliari, L.

A. Paris, A. Vaccari, A. Calà Lesina, E. Serra, L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cells,” plasmonics (2012).
[CrossRef]

Campbell, P.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Catchpole, K. R.

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19, A146–56 (2011).
[CrossRef] [PubMed]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D: Appl. Phys. 44, 185101 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 1–3 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[CrossRef]

F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–800 (2008).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 1–8 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

K. R. Catchpole, S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315–318 (2006).
[CrossRef]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).

de Waele, R.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D: Appl. Phys. 44, 185101 (2011).
[CrossRef]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Dmitriev, A.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Fredriksson, H.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Geng, Z.

W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 693–698 (2011).
[CrossRef]

Grady, N. K.

S. P. Sundararajan, N. K. Grady, N. Mirin, N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–30 (2008).
[CrossRef] [PubMed]

Green, M. A.

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, M. A. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 1–8 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Halas, N. J.

S. P. Sundararajan, N. K. Grady, N. Mirin, N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–30 (2008).
[CrossRef] [PubMed]

Hall, D. G.

H. R. Stuart, D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

H. R. Stuart, D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998).
[CrossRef]

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

Hansen, J. L.

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology 23, 085202 (2012).
[CrossRef] [PubMed]

Ho-Baillie, A.

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, M. A. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[CrossRef]

Huang, J.-J.

F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207–20 (2010).
[CrossRef] [PubMed]

Johansen, B.

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology 23, 085202 (2012).
[CrossRef] [PubMed]

Kampwerth, H.

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, M. A. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[CrossRef]

Kasemo, B.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Kiang, Y.-W.

F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207–20 (2010).
[CrossRef] [PubMed]

Koh, W. S.

Kunz, O.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Langhammer, C.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Larsen, A. N.

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology 23, 085202 (2012).
[CrossRef] [PubMed]

Li, J.

W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 693–698 (2011).
[CrossRef]

Li, Y.

W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 693–698 (2011).
[CrossRef]

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Liu, W.

W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 693–698 (2011).
[CrossRef]

Mahanama, G. D. K.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Mehrvarz, H.

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, M. A. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[CrossRef]

Mirin, N.

S. P. Sundararajan, N. K. Grady, N. Mirin, N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–30 (2008).
[CrossRef] [PubMed]

Mokkapati, S.

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19, A146–56 (2011).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D: Appl. Phys. 44, 185101 (2011).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 1–3 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[CrossRef]

Nakayama, K.

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Ostrikov, K.

Ouyang, Z.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 19, 917–926 (2011).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Paris, A.

A. Paris, A. Vaccari, A. Calà Lesina, E. Serra, L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cells,” plasmonics (2012).
[CrossRef]

Petersson, G.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Pillai, S.

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, M. A. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[CrossRef]

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 19, 917–926 (2011).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 1–8 (2007).
[CrossRef]

K. R. Catchpole, S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315–318 (2006).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

Polman, A.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D: Appl. Phys. 44, 185101 (2011).
[CrossRef]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19, A146–56 (2011).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 1–3 (2010).
[CrossRef]

F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[CrossRef]

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–800 (2008).
[CrossRef] [PubMed]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).

Reehal, H. S.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Serra, E.

A. Paris, A. Vaccari, A. Calà Lesina, E. Serra, L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cells,” plasmonics (2012).
[CrossRef]

Stuart, H. R.

H. R. Stuart, D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998).
[CrossRef]

H. R. Stuart, D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

Sundararajan, S. P.

S. P. Sundararajan, N. K. Grady, N. Mirin, N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–30 (2008).
[CrossRef] [PubMed]

Sutherland, D. S.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Tanabe, K.

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Tao, Y.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 19, 917–926 (2011).
[CrossRef]

Temple, T. L.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 1–8 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

Tsai, F.-J.

F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207–20 (2010).
[CrossRef] [PubMed]

Uhrenfeldt, C.

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology 23, 085202 (2012).
[CrossRef] [PubMed]

Ulriksen, H. U.

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology 23, 085202 (2012).
[CrossRef] [PubMed]

Vaccari, A.

A. Paris, A. Vaccari, A. Calà Lesina, E. Serra, L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cells,” plasmonics (2012).
[CrossRef]

Varlamov, S.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 19, 917–926 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Verhagen, E.

Villesen, T. F.

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology 23, 085202 (2012).
[CrossRef] [PubMed]

Wang, J.-Y.

F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207–20 (2010).
[CrossRef] [PubMed]

Wang, X.

W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 693–698 (2011).
[CrossRef]

Wong, J.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 19, 917–926 (2011).
[CrossRef]

Yang, C. C.

F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207–20 (2010).
[CrossRef] [PubMed]

Yang, F.

W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 693–698 (2011).
[CrossRef]

Yang, Y.

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, M. A. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[CrossRef]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Zhang, G.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

Zhao, J.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

Zhao, X.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 19, 917–926 (2011).
[CrossRef]

Adv. Mater. (1)

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 1–3 (2010).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Appl. Phys. Lett. (9)

S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[CrossRef]

H. R. Stuart, D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

J. Appl. Phys. (2)

S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 1–8 (2007).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[CrossRef]

J. Appl. Phys. (2)

F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

J. Lumin. (1)

K. R. Catchpole, S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315–318 (2006).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D: Appl. Phys. 44, 185101 (2011).
[CrossRef]

Nano Lett. (1)

S. P. Sundararajan, N. K. Grady, N. Mirin, N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett. 8, 624–30 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology 23, 085202 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–800 (2008).
[CrossRef] [PubMed]

F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207–20 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. Lett. (1)

H. R. Stuart, D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998).
[CrossRef]

Prog. Photovolt: Res. Appl. (1)

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 19, 917–926 (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, M. A. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 693–698 (2011).
[CrossRef]

Other (1)

A. Paris, A. Vaccari, A. Calà Lesina, E. Serra, L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cells,” plasmonics (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Illustration of the optical measurement geometry in the front illumination configuration. (b) SEM image of the 42 nm × 200 nm (height × diameter) Au nanodisks on a TiO2-coated glass slide. (c) Measurement of total transmittance (T), reflectance (R) and transflectance (TR) with an integrating sphere. All transmitted/reflected light entering the integrating sphere is eventually collected into the detector, situated at the bottom of the sphere.

Fig. 2
Fig. 2

(a) Transmittances of TiO2 films without Au nanodisks and (b) transmission spectra of samples with nanoparticles on plain glass and on 900, 450 and 100 nm TiO2. Bands around lines show the maximum error limits of measurements

Fig. 3
Fig. 3

Emission spectra, i.e. intensity of light emitted out of the waveguide edge in front (solid orange line) and rear (dashed green line) illumination configurations, of samples with Au nanodisks on (a) plain glass and (b) 900, (c) 450 and (d) 100 nm TiO2. Dotted lines: Transmittance of the Au particles on glass is shown for reference in (a) and transmittance of the TiO2 films without the nanoparticles in (b–d), to illustrate the correspondence between thin-film interference and coupling efficiency. Bands around lines show the 95 % confidence bands (inner bands) and maximum errors (outer bands) of measurements. If only one band is visible, it is the maximum error band. Vertical bands show locations of the resonant LSP modes.

Fig. 4
Fig. 4

Effect of spacer layer on the coupling efficiency. Samples with 900 nm TiO2 waveguide and Au nanodisks with (dashed green lines) and without (solid orange lines) the spacer layer. (a) Transmittances. (b) Transmittances without the nanodisks. (c,d) Emission spectra under front and rear illumination, respectively. Bands around lines show the 95 % confidence bands (inner bands) and maximum errors (outer bands) of measurements. If only one band is visible, it is the maximum error band. Vertical bands show the locations of the shorter wavelength LSP resonances.

Fig. 5
Fig. 5

Sample with 900 nm TiO2 and Au nanodisks. Upper part: total transmittance (dotted blue line) and beam transmittance with maximum error limits (band around dotted line). Lower part: Total reflectance for front (solid orange line) and rear illumination (dashed green line) and for sample without Au nanodisks (dotted red line). Inset: total reflectance of Au nanodisks on plain glass.

Fig. 6
Fig. 6

(a) Absorption of sample with 900 nm TiO2 and Au nanodisks. Solid lines: absorptance from the separate total transmittance and reflectance measurements; dashed lines: absorptance from the transflectance measurements. (b) Emission spectrum of same sample, same as in Fig. 3(b).

Fig. 7
Fig. 7

Transmission and reflection illustrated with (a) front and (b) rear illumination. Reflectance is decreased when the sample is illuminated from the rear, whereas transmittance remains unchanged.

Metrics