Abstract

Three different types of polarization-sensitive perfect absorbers are designed and numerically investigated. The bottle-like and the cup-like absorbers are narrowband absorbers, which strongly absorb light of a specific polarization and reflect almost all light of another polarization. By varying the geometric parameters, their absorption peaks can be tuned from 1300 nm to 2300 nm and 700 nm to 1400 nm, respectively. The broadband absorber is polarization-sensitive as well, exhibiting an average absorption efficiency of 88% over a wide range of wavelength (700-2300 nm). The proposed absorbers may have potential applications in polarization detectors, polarizers etc.

© 2012 OSA

Full Article  |  PDF Article

Corrections

Lijun Meng, Ding Zhao, Qiang Li, and Min Qiu, "Polarization-sensitive perfect absorbers at near-infrared wavelengths: Erratum," Opt. Express 21, A229-A230 (2013)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-S2-A229

References

  • View by:
  • |
  • |
  • |

  1. T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [CrossRef]
  2. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  3. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
    [CrossRef] [PubMed]
  4. V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
    [CrossRef]
  5. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [CrossRef]
  6. J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
    [CrossRef]
  7. J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
    [CrossRef] [PubMed]
  8. X. Chen, Y. Chen, M. Yan, M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
    [CrossRef] [PubMed]
  9. A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
    [CrossRef]
  10. V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
    [CrossRef]
  11. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [CrossRef] [PubMed]
  12. H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
    [CrossRef]
  13. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [CrossRef] [PubMed]
  14. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [CrossRef] [PubMed]
  15. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
    [CrossRef] [PubMed]
  16. X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [CrossRef] [PubMed]
  17. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  18. D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
    [CrossRef]
  19. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [CrossRef] [PubMed]
  20. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [CrossRef] [PubMed]
  21. Y. Gong, X. Liu, H. Lu, L. Wang, G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
    [CrossRef] [PubMed]
  22. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
    [CrossRef] [PubMed]
  23. J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [CrossRef]
  24. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
    [CrossRef] [PubMed]
  25. C. Hu, Z. Zhao, X. Chen, X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
    [CrossRef] [PubMed]
  26. E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
    [CrossRef] [PubMed]
  27. C. Wu, Y. Avitzour, and G. Shvets, “Ultra-thin, wide-angle perfect absorber for infrared frequencies, “Proc. SPIE, Proceedings of Metamaterials: Fundamentals and Applications, San Diego, CA, August 10-14 (2008).
  28. J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
    [CrossRef] [PubMed]
  29. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
    [CrossRef]
  30. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
    [CrossRef]
  31. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
    [CrossRef]
  32. S. W. Zhang, H. T. Liu, G. G. Mu, “Electromagnetic enhancement by a single nano-groove in metallic substrate,” J. Opt. Soc. Am. A 27(7), 1555–1560 (2010).
    [CrossRef] [PubMed]
  33. D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [CrossRef]
  34. N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [CrossRef]

2012 (2)

2011 (12)

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[CrossRef] [PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[CrossRef] [PubMed]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[CrossRef] [PubMed]

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
[CrossRef] [PubMed]

2010 (7)

S. W. Zhang, H. T. Liu, G. G. Mu, “Electromagnetic enhancement by a single nano-groove in metallic substrate,” J. Opt. Soc. Am. A 27(7), 1555–1560 (2010).
[CrossRef] [PubMed]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

2009 (2)

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

C. Hu, Z. Zhao, X. Chen, X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
[CrossRef] [PubMed]

2008 (5)

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

2005 (1)

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

2004 (1)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

2003 (1)

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Abdelsalam, M.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Averitt, R. D.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Azad, A. K.

D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Bartlett, P. N.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Bingham, C. M.

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Borisov, A. G.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Cabrini, S.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Chen, Q.

Chen, S.

Chen, X.

Chen, Y.

X. Chen, Y. Chen, M. Yan, M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

Crozier, K. B.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

Cui, T. J.

Cumming, D. R. S.

Derrick, G. H.

Dhuey, S.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Fan, K.

Fan, K. B.

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Feng, Q.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Fromm, D. P.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Garcia de Abajo, F. J.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Gong, Y.

Grant, J.

Grigorenko, A. N.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Hao, J.

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Hao, Q.

Harteneck, B.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Hu, C.

Huang, C.

Huang, T. J.

Hutley, M. C.

Iwaszczuk, K.

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Jepsen, P. U.

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Jiang, W. X.

Jokerst, N.

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Khalid, A.

Khoo, I. C.

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

Kiraly, B.

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Kravets, A. F.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

Kravets, V. G.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Landy, N. L.

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Li, H.

Liu, H. T.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

López-Ríos, T.

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Lu, H.

Luo, X.

Ma, H. F.

Ma, Y.

Markos, P.

D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Maystre, D.

McPhedran, R. C.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Moerner, W. E.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Mu, G. G.

Neubeck, S.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

Nevière, M.

O'Hara, J. F.

D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Padmore, H. A.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

Pilon, D.

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Polyakov, A.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

Popov, E.

Pu, M.

Qiu, M.

X. Chen, Y. Chen, M. Yan, M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Schuck, P. J.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Schultz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Shchegolkov, D. Y.

D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Shen, X.

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Simakov, E. I.

D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

Smith, D. R.

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Strikwerda, A. C.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Tao, H.

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Teperik, T. V.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Wang, C.

Wang, G.

Wang, J.

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Wang, L.

Wang, M.

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Yan, M.

X. Chen, Y. Chen, M. Yan, M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Zhang, B.

Zhang, S. W.

Zhang, X.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Zhao, J.

Zhao, Y.

Zhao, Z.

Zhou, L.

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

ACS Nano (1)

X. Chen, Y. Chen, M. Yan, M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Adv. Mater. (1)

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett. 98(20), 203104 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

J. Appl. Phys. (1)

J. Wang, Y. Chen, J. Hao, M. Yan, M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Nano Lett. (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Nat Commun (1)

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Opt. Express (8)

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[CrossRef] [PubMed]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[CrossRef] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[CrossRef] [PubMed]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[CrossRef] [PubMed]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
[CrossRef] [PubMed]

C. Hu, Z. Zhao, X. Chen, X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
[CrossRef] [PubMed]

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (7)

D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[CrossRef]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

N. L. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-sensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Phys. Rev. Lett. (5)

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Other (1)

C. Wu, Y. Avitzour, and G. Shvets, “Ultra-thin, wide-angle perfect absorber for infrared frequencies, “Proc. SPIE, Proceedings of Metamaterials: Fundamentals and Applications, San Diego, CA, August 10-14 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Schematic of the bottle-like absorber, the yellow region is gold and blue regions are the dielectric. (b) Cross-section of a unit cell. The width and the depth of the air gap are represented by a and b, respectively. c and d represent the thickness and the width of the dielectric strip, respectively, and w is the period.

Fig. 2
Fig. 2

Dependence of absorption spectra on geometric parameters, if not particularly specified, a = 5 nm, b = 10 nm, c = 60 nm, d = 60 nm, w = 600 nm. (a)-(c) are for p-polarized light. (d) is for s- polarized light.

Fig. 3
Fig. 3

Comparison between the electric intensity enhancements under (a) p-polarized light radiation and under (b) s-polarized light radiation at 1600 nm (plotted on log scale). Geometric parameters: a = 5 nm, b = 10 nm, c = 60 nm, d = 60 nm, and w = 600 nm.

Fig. 4
Fig. 4

Absorption and electric intensity enhancement (plotted on log scale) at the center of the air gap as functions of incident wavelengths under p-polarized light radiation. The geometric parameters are the same as those in Fig. 3.

Fig. 5
Fig. 5

Retrieved impedance Z and refractive index n. The geometric parameters are the same as those in Fig. 3.

Fig. 6
Fig. 6

Absorbance as functions of wavelengths and incident angles. (a) E⊥Syz (b) H⊥Syz (c) E⊥Sxz (d) H⊥Sxz.

Fig. 7
Fig. 7

(a) Schematic of the cup-like absorber, the yellow region is gold and blue regions are the dielectric. (b) Cross-section of a unit cell. a and H, respectively, represent the width and the depth of the grooves, d denote the thickness of the deposited dielectric, and w is the period.

Fig. 8
Fig. 8

Dependence of absorption spectra on the geometric parameters under p-polarized light. Here a = 20 nm, and w = 600 nm.

Fig. 9
Fig. 9

Comparison between electric intensity enhancements under (a) p-polarized light radiation and under (b) s-polarized light radiation (plotted on log scale). Wavelength and geometric parameters correspond to the first peak in Fig. 8(a).

Fig. 10
Fig. 10

Absorbance as functions of wavelengths and incident angles. (a) E⊥Syz (b) H⊥Syz (c) E⊥Sxz (d) H⊥Sxz. Here H = 100 nm, d = 90 nm.

Fig. 11
Fig. 11

Absorption under p-polarized light. Average absorption efficiency is over 88%. Every half of a unit cell contains 40 grooves. In the Inset is the simplified structure. (a) is schematic of the broadband absorber, the yellow region is gold and blue regions are the dielectric. (b) is cross-section of half a unit cell. a = 100 nm, w = 80 nm, H = 50 nm.

Fig. 12
Fig. 12

Retrieved impendence and refractive index in the simulated region.

Fig. 13
Fig. 13

Absorbance as functions of wavelength and incident angle. (a) E⊥Syz (b) H⊥Syz (c) E⊥Sxz (d) H⊥Sxz.

Metrics