Abstract

We report a Brillouin-based fully distributed and dynamic monitoring of the strain induced by a propagating mechanical wave along a 20m long composite strip, to which surface a single-mode optical fiber was glued. Employing a simplified version of the Slope-Assisted Brillouin Optical Time Domain Analysis (SA-BOTDA) technique, the whole length of the strip was interrogated every 10ms (strip sampling rate of 100Hz) with a spatial resolution of the order of 1m. A dynamic spatially and temporally continuous map of the strain was obtained, whose temporal behavior at four discrete locations was verified against co-located fiber Bragg gratings. With a trade-off among sampling rate, range and signal to noise ratio, kHz sampling rates and hundreds of meters of range can be obtained with resolution down to a few centimeters.

© 2013 OSA

PDF Article
OSA Recommended Articles
Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile

Yair Peled, Avi Motil, Lior Yaron, and Moshe Tur
Opt. Express 19(21) 19845-19854 (2011)

Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA

Dexin Ba, Benzhang Wang, Dengwang Zhou, Mingjing Yin, Yongkang Dong, Hui Li, Zhiwei Lu, and Zhigang Fan
Opt. Express 24(9) 9781-9793 (2016)

Mitigating the effects of the gain-dependence of the Brillouin line-shape on dynamic BOTDA sensing methods

Avi Motil, Roy Davidi, Raanan Hadar, and Moshe Tur
Opt. Express 25(19) 22206-22218 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).
  2. B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133–142 (2001).
    [Crossref]
  3. M. Froggatt and J. Moore, “High resolution strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt. 37, 1735–1740 (1998).
    [Crossref] [PubMed]
  4. D. P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20(12), 13138–13145 (2012).
    [Crossref] [PubMed]
  5. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [Crossref] [PubMed]
  6. L. Thévenaz, “Inelastic Scatterings and Applications to Distributed Sensing” in Advanced Fiber Optics - Concepts and Technology, Thévenaz L. ed, (Switzerland: EPFL University, 2011).
  7. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12, 8601–8639 (2012).
    [Crossref] [PubMed]
  8. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  9. S. M. Foaleng, M. Tur, J. C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
    [Crossref]
  10. T. Sperber, A. Eyal, M. Tur, and L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010).
    [Crossref] [PubMed]
  11. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
    [Crossref]
  12. K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
    [Crossref]
  13. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [Crossref] [PubMed]
  14. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  15. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
    [Crossref] [PubMed]
  16. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [Crossref] [PubMed]
  17. A. Voskoboinik, J. Wang, B. Shamee, S. R. Nuccio, L. Zhang, M. Chitgarha, A. E. Willner, and M. Tur, “SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation,” J. Lightwave Technol. 29(11), 1729–1735 (2011).
    [Crossref]
  18. T. Yari, K. Nagai, and K. Hotate, “Monitoring aircraft structural health using optical fiber sensors,” Mitsubishi Heavy Ind. Tech. Rev. 45, 5–8 (2008).
  19. A. Motil, Y. Peled, L. Yaron, and M. Tur, “BOTDA measurements in the presence of fiber vibrations,” Proc. SPIE 8351, 835132, 835132-6 (2012).
    [Crossref]
  20. J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20(24), 26942–26949 (2012).
    [Crossref] [PubMed]
  21. J. C. Beugnot, M. Tur, S. F. Mafang, and L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express 19(8), 7381–7397 (2011).
    [Crossref] [PubMed]
  22. S. Timoshenko and D. N. Young, Vibration Problems in Engineering (V. Nostrand, N.J., 1955).

2012 (5)

2011 (4)

2010 (2)

2009 (1)

2008 (2)

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[Crossref] [PubMed]

T. Yari, K. Nagai, and K. Hotate, “Monitoring aircraft structural health using optical fiber sensors,” Mitsubishi Heavy Ind. Tech. Rev. 45, 5–8 (2008).

2007 (1)

2002 (1)

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
[Crossref]

2001 (1)

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133–142 (2001).
[Crossref]

1998 (1)

1990 (1)

Allison, S. G.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133–142 (2001).
[Crossref]

Bao, X.

Batten, C. F.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133–142 (2001).
[Crossref]

Bernini, R.

Beugnot, J. C.

Brown, A. W.

Brown, K.

Chen, L.

Childers, B. A.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133–142 (2001).
[Crossref]

Chitgarha, M.

Colpitts, B. G.

Eyal, A.

Foaleng, S. M.

Froggatt, M.

Froggatt, M. E.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133–142 (2001).
[Crossref]

Hare, D. A.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133–142 (2001).
[Crossref]

He, Z.

Horiguchi, T.

Hotate, K.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[Crossref] [PubMed]

T. Yari, K. Nagai, and K. Hotate, “Monitoring aircraft structural health using optical fiber sensors,” Mitsubishi Heavy Ind. Tech. Rev. 45, 5–8 (2008).

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
[Crossref]

Jegley, D. C.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133–142 (2001).
[Crossref]

Kishi, M.

Kurashima, T.

Li, W.

Li, Y.

Loayssa, A.

Mafang, S. F.

Minardo, A.

Moore, J.

Moore, T. C.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133–142 (2001).
[Crossref]

Motil, A.

Nagai, K.

T. Yari, K. Nagai, and K. Hotate, “Monitoring aircraft structural health using optical fiber sensors,” Mitsubishi Heavy Ind. Tech. Rev. 45, 5–8 (2008).

Nuccio, S. R.

Ong, S. S. L.

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
[Crossref]

Peled, Y.

Qin, Z.

Sagues, M.

Shamee, B.

Song, K. Y.

Sperber, T.

Tateda, M.

Thevenaz, L.

Thévenaz, L.

Tur, M.

Urricelqui, J.

Voskoboinik, A.

Wang, J.

Willner, A. E.

Yari, T.

T. Yari, K. Nagai, and K. Hotate, “Monitoring aircraft structural health using optical fiber sensors,” Mitsubishi Heavy Ind. Tech. Rev. 45, 5–8 (2008).

Yaron, L.

A. Motil, Y. Peled, L. Yaron, and M. Tur, “BOTDA measurements in the presence of fiber vibrations,” Proc. SPIE 8351, 835132, 835132-6 (2012).
[Crossref]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

Zeni, L.

Zhang, L.

Zhou, D. P.

Zornoza, A.

Appl. Opt. (1)

J. Lightwave Technol. (3)

Mitsubishi Heavy Ind. Tech. Rev. (1)

T. Yari, K. Nagai, and K. Hotate, “Monitoring aircraft structural health using optical fiber sensors,” Mitsubishi Heavy Ind. Tech. Rev. 45, 5–8 (2008).

Opt. Express (7)

Opt. Lett. (3)

Proc. SPIE (3)

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
[Crossref]

A. Motil, Y. Peled, L. Yaron, and M. Tur, “BOTDA measurements in the presence of fiber vibrations,” Proc. SPIE 8351, 835132, 835132-6 (2012).
[Crossref]

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133–142 (2001).
[Crossref]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12, 8601–8639 (2012).
[Crossref] [PubMed]

Other (3)

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

L. Thévenaz, “Inelastic Scatterings and Applications to Distributed Sensing” in Advanced Fiber Optics - Concepts and Technology, Thévenaz L. ed, (Switzerland: EPFL University, 2011).

S. Timoshenko and D. N. Young, Vibration Problems in Engineering (V. Nostrand, N.J., 1955).

Supplementary Material (5)

» Media 1: MOV (576 KB)     
» Media 2: MOV (689 KB)     
» Media 3: MOV (821 KB)     
» Media 4: MOV (519 KB)     
» Media 5: MOV (855 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics