Abstract

An efficient LED lamp that illuminates the street with high quality is presented. The luminaire shows high optical efficiency, high optical utilization factor, low glare, and illuminates the street with high uniformity. The concept is simple but effective: a cluster of LEDs with TIR lenses are put inside a reflective box, which is covered with a microlens sheet; the reflective cavity improves efficiency by light recycling; each TIR lens collimates the LED light for the microlens array; and the microlens sheet uniformly distributes light only into the street. We verify its feasibility by Monte Carlo ray-tracing for the main types of road lighting arrangements: central, zigzag, and single-side pole positions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Haans and Y. A. W. de Kort, “Light distribution in dynamic street lighting: two experimental studies on its effects on perceived safety, prospect, concealment, and escape,” J. Environ. Psychol.32(4), 342–352 (2012).
    [CrossRef]
  2. K. Painter, “The influence of street lighting improvements on crime, fear, and pedestrian street use, after dark,” Landsc. Urban Plan.35(2-3), 193–201 (1996).
    [CrossRef]
  3. R. Müllner and A. Riener, “An energy efficient pedestrian aware smart street lighting system,” Int. J. Pervas. Comput. Commun.7(2), 147–161 (2011) (IJPCC).
    [CrossRef]
  4. C. C. Sun, C. J. Jiang, Y. C. Chen, and T. H. Yang, “Equivalent luminance for three types of street lamps based on white LEDs,” To be submitted.
  5. Z. Feng, Y. Luo, and Y. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express18(21), 22020–22031 (2010).
    [CrossRef] [PubMed]
  6. S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express19(S4Suppl 4), A716–A724 (2011).
    [CrossRef] [PubMed]
  7. J. W. Pan, S. H. Tu, W. S. Sun, C. M. Wang, and J. Y. Chang, “Integration of non-Lambertian LED and reflective optical element as efficient street lamp,” Opt. Express18(S2Suppl 2), A221–A230 (2010).
    [CrossRef] [PubMed]
  8. S. Magarill, “Skew-faceted elliptical reflector,” Opt. Lett.36(4), 532–533 (2011).
    [CrossRef] [PubMed]
  9. Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab.52(5), 889–893 (2012).
    [CrossRef]
  10. C. H. Jen, Y. Y. Chen, A. J. W. Whang, and M. J. Lu, “Non-axisymmetrical freeform design for short LED street lamp,” Proc. SPIE8123, 812307, 812307-7 (2011).
    [CrossRef]
  11. J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)121(19), 1761–1765 (2010).
    [CrossRef]
  12. C. C. Sun, W. T. Chien, I. Moreno, C. T. Hsieh, M. C. Lin, S. L. Hsiao, and X. H. Lee, “Calculating model of light transmission efficiency of diffusers attached to a lighting cavity,” Opt. Express18(6), 6137–6148 (2010).
    [CrossRef] [PubMed]
  13. X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol.49, 153–155 (2013).
    [CrossRef]
  14. Illuminating Engineering Society of North America, The IESNA Lighting Handbook: Reference and Application, 9th ed. (IESNA, 2000).
  15. A. Pachamanov and D. Pachamanova, “Optimization of the light distribution of luminaries for tunnel and street lighting,” Eng. Optim.40(1), 47–65 (2008).
    [CrossRef]
  16. I. Moreno, “LED street lighting: modeling and design,” To be submitted.
  17. T. R. M. Sales, “Structured microlens arrays for beam shaping,” Opt. Eng.42(11), 3084–3085 (2003).
    [CrossRef]
  18. X. H. Lee, J. L. Tsai, S. H. Ma, and C. C. Sun, “Surface-structured diffuser by iterative down-size molding with glass sintering technology,” Opt. Express20(6), 6135–6145 (2012).
    [CrossRef] [PubMed]
  19. V. N. Mahajan, Optical Imaging and Aberrations: Part I. Ray Geometrical Optics (SPIE Press, 1998).
  20. A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE7103, 710304, 710304-11 (2008).
    [CrossRef]
  21. J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng.49(9), 093001 (2010).
    [CrossRef]
  22. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett.31(14), 2193–2195 (2006).
    [CrossRef] [PubMed]
  23. C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express17(16), 13918–13927 (2009).
    [CrossRef] [PubMed]

2013 (1)

X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol.49, 153–155 (2013).
[CrossRef]

2012 (3)

A. Haans and Y. A. W. de Kort, “Light distribution in dynamic street lighting: two experimental studies on its effects on perceived safety, prospect, concealment, and escape,” J. Environ. Psychol.32(4), 342–352 (2012).
[CrossRef]

Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab.52(5), 889–893 (2012).
[CrossRef]

X. H. Lee, J. L. Tsai, S. H. Ma, and C. C. Sun, “Surface-structured diffuser by iterative down-size molding with glass sintering technology,” Opt. Express20(6), 6135–6145 (2012).
[CrossRef] [PubMed]

2011 (4)

S. Magarill, “Skew-faceted elliptical reflector,” Opt. Lett.36(4), 532–533 (2011).
[CrossRef] [PubMed]

S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express19(S4Suppl 4), A716–A724 (2011).
[CrossRef] [PubMed]

C. H. Jen, Y. Y. Chen, A. J. W. Whang, and M. J. Lu, “Non-axisymmetrical freeform design for short LED street lamp,” Proc. SPIE8123, 812307, 812307-7 (2011).
[CrossRef]

R. Müllner and A. Riener, “An energy efficient pedestrian aware smart street lighting system,” Int. J. Pervas. Comput. Commun.7(2), 147–161 (2011) (IJPCC).
[CrossRef]

2010 (5)

2009 (1)

2008 (2)

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE7103, 710304, 710304-11 (2008).
[CrossRef]

A. Pachamanov and D. Pachamanova, “Optimization of the light distribution of luminaries for tunnel and street lighting,” Eng. Optim.40(1), 47–65 (2008).
[CrossRef]

2006 (1)

2003 (1)

T. R. M. Sales, “Structured microlens arrays for beam shaping,” Opt. Eng.42(11), 3084–3085 (2003).
[CrossRef]

1996 (1)

K. Painter, “The influence of street lighting improvements on crime, fear, and pedestrian street use, after dark,” Landsc. Urban Plan.35(2-3), 193–201 (1996).
[CrossRef]

Chang, J. Y.

Chen, F.

Chen, J. J.

J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng.49(9), 093001 (2010).
[CrossRef]

Chen, Y. C.

C. C. Sun, C. J. Jiang, Y. C. Chen, and T. H. Yang, “Equivalent luminance for three types of street lamps based on white LEDs,” To be submitted.

Chen, Y. Y.

C. H. Jen, Y. Y. Chen, A. J. W. Whang, and M. J. Lu, “Non-axisymmetrical freeform design for short LED street lamp,” Proc. SPIE8123, 812307, 812307-7 (2011).
[CrossRef]

Cheung, B.

J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)121(19), 1761–1765 (2010).
[CrossRef]

Chien, W. T.

de Kort, Y. A. W.

A. Haans and Y. A. W. de Kort, “Light distribution in dynamic street lighting: two experimental studies on its effects on perceived safety, prospect, concealment, and escape,” J. Environ. Psychol.32(4), 342–352 (2012).
[CrossRef]

Domhardt, A.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE7103, 710304, 710304-11 (2008).
[CrossRef]

Feng, Z.

Haans, A.

A. Haans and Y. A. W. de Kort, “Light distribution in dynamic street lighting: two experimental studies on its effects on perceived safety, prospect, concealment, and escape,” J. Environ. Psychol.32(4), 342–352 (2012).
[CrossRef]

Han, Y.

Hsiao, S. L.

Hsieh, C. C.

Hsieh, C. T.

Huang, K. T.

Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab.52(5), 889–893 (2012).
[CrossRef]

Huang, S. M.

Jen, C. H.

C. H. Jen, Y. Y. Chen, A. J. W. Whang, and M. J. Lu, “Non-axisymmetrical freeform design for short LED street lamp,” Proc. SPIE8123, 812307, 812307-7 (2011).
[CrossRef]

Jiang, C. J.

C. C. Sun, C. J. Jiang, Y. C. Chen, and T. H. Yang, “Equivalent luminance for three types of street lamps based on white LEDs,” To be submitted.

Jiang, J.

J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)121(19), 1761–1765 (2010).
[CrossRef]

Lee, K. H.

X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol.49, 153–155 (2013).
[CrossRef]

Lee, T. X.

Lee, W. B.

J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)121(19), 1761–1765 (2010).
[CrossRef]

Lee, X. H.

X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol.49, 153–155 (2013).
[CrossRef]

Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab.52(5), 889–893 (2012).
[CrossRef]

X. H. Lee, J. L. Tsai, S. H. Ma, and C. C. Sun, “Surface-structured diffuser by iterative down-size molding with glass sintering technology,” Opt. Express20(6), 6135–6145 (2012).
[CrossRef] [PubMed]

C. C. Sun, W. T. Chien, I. Moreno, C. T. Hsieh, M. C. Lin, S. L. Hsiao, and X. H. Lee, “Calculating model of light transmission efficiency of diffusers attached to a lighting cavity,” Opt. Express18(6), 6137–6148 (2010).
[CrossRef] [PubMed]

Lee, Y. L.

Lemmer, U.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE7103, 710304, 710304-11 (2008).
[CrossRef]

Lin, C. T.

J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng.49(9), 093001 (2010).
[CrossRef]

Lin, M. C.

Liu, S.

Lo, Y. C.

Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab.52(5), 889–893 (2012).
[CrossRef]

C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express17(16), 13918–13927 (2009).
[CrossRef] [PubMed]

Lu, M. J.

C. H. Jen, Y. Y. Chen, A. J. W. Whang, and M. J. Lu, “Non-axisymmetrical freeform design for short LED street lamp,” Proc. SPIE8123, 812307, 812307-7 (2011).
[CrossRef]

Luo, Y.

Ma, S. H.

Magarill, S.

Moreno, I.

Müllner, R.

R. Müllner and A. Riener, “An energy efficient pedestrian aware smart street lighting system,” Int. J. Pervas. Comput. Commun.7(2), 147–161 (2011) (IJPCC).
[CrossRef]

Pachamanov, A.

A. Pachamanov and D. Pachamanova, “Optimization of the light distribution of luminaries for tunnel and street lighting,” Eng. Optim.40(1), 47–65 (2008).
[CrossRef]

Pachamanova, D.

A. Pachamanov and D. Pachamanova, “Optimization of the light distribution of luminaries for tunnel and street lighting,” Eng. Optim.40(1), 47–65 (2008).
[CrossRef]

Painter, K.

K. Painter, “The influence of street lighting improvements on crime, fear, and pedestrian street use, after dark,” Landsc. Urban Plan.35(2-3), 193–201 (1996).
[CrossRef]

Pan, J. W.

Riener, A.

R. Müllner and A. Riener, “An energy efficient pedestrian aware smart street lighting system,” Int. J. Pervas. Comput. Commun.7(2), 147–161 (2011) (IJPCC).
[CrossRef]

Rohlfing, U.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE7103, 710304, 710304-11 (2008).
[CrossRef]

Sales, T. R. M.

T. R. M. Sales, “Structured microlens arrays for beam shaping,” Opt. Eng.42(11), 3084–3085 (2003).
[CrossRef]

Sun, C. C.

Sun, W. S.

To, S.

J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)121(19), 1761–1765 (2010).
[CrossRef]

Tsai, J. L.

Tu, S. H.

Wang, C. M.

Wang, K.

Wang, S.

Weingaertner, S.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE7103, 710304, 710304-11 (2008).
[CrossRef]

Whang, A. J. W.

C. H. Jen, Y. Y. Chen, A. J. W. Whang, and M. J. Lu, “Non-axisymmetrical freeform design for short LED street lamp,” Proc. SPIE8123, 812307, 812307-7 (2011).
[CrossRef]

Wu, C. S.

X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol.49, 153–155 (2013).
[CrossRef]

Yang, T. H.

X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol.49, 153–155 (2013).
[CrossRef]

C. C. Sun, C. J. Jiang, Y. C. Chen, and T. H. Yang, “Equivalent luminance for three types of street lamps based on white LEDs,” To be submitted.

Eng. Optim. (1)

A. Pachamanov and D. Pachamanova, “Optimization of the light distribution of luminaries for tunnel and street lighting,” Eng. Optim.40(1), 47–65 (2008).
[CrossRef]

Int. J. Pervas. Comput. Commun. (1)

R. Müllner and A. Riener, “An energy efficient pedestrian aware smart street lighting system,” Int. J. Pervas. Comput. Commun.7(2), 147–161 (2011) (IJPCC).
[CrossRef]

J. Environ. Psychol. (1)

A. Haans and Y. A. W. de Kort, “Light distribution in dynamic street lighting: two experimental studies on its effects on perceived safety, prospect, concealment, and escape,” J. Environ. Psychol.32(4), 342–352 (2012).
[CrossRef]

Landsc. Urban Plan. (1)

K. Painter, “The influence of street lighting improvements on crime, fear, and pedestrian street use, after dark,” Landsc. Urban Plan.35(2-3), 193–201 (1996).
[CrossRef]

Microelectron. Reliab. (1)

Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab.52(5), 889–893 (2012).
[CrossRef]

Opt. Eng. (2)

T. R. M. Sales, “Structured microlens arrays for beam shaping,” Opt. Eng.42(11), 3084–3085 (2003).
[CrossRef]

J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng.49(9), 093001 (2010).
[CrossRef]

Opt. Express (6)

Opt. Laser Technol. (1)

X. H. Lee, C. S. Wu, K. H. Lee, T. H. Yang, and C. C. Sun, “An optical-adjustable illumination pattern with surface-structured diffuser compensated by index-matching liquid,” Opt. Laser Technol.49, 153–155 (2013).
[CrossRef]

Opt. Lett. (2)

Optik (Stuttg.) (1)

J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)121(19), 1761–1765 (2010).
[CrossRef]

Proc. SPIE (2)

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE7103, 710304, 710304-11 (2008).
[CrossRef]

C. H. Jen, Y. Y. Chen, A. J. W. Whang, and M. J. Lu, “Non-axisymmetrical freeform design for short LED street lamp,” Proc. SPIE8123, 812307, 812307-7 (2011).
[CrossRef]

Other (4)

Illuminating Engineering Society of North America, The IESNA Lighting Handbook: Reference and Application, 9th ed. (IESNA, 2000).

C. C. Sun, C. J. Jiang, Y. C. Chen, and T. H. Yang, “Equivalent luminance for three types of street lamps based on white LEDs,” To be submitted.

V. N. Mahajan, Optical Imaging and Aberrations: Part I. Ray Geometrical Optics (SPIE Press, 1998).

I. Moreno, “LED street lighting: modeling and design,” To be submitted.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Light distribution in street lighting. (a) Weakness of traditional technologies. (b) and (c) show a graphical comparison between traditional street lighting (b) and ideal LED street lighting (c).

Fig. 2
Fig. 2

Schematic diagram of the proposed LED lamp.

Fig. 3
Fig. 3

(a) The three basic placements for street lighting that we analyze: central, zigzag, and single-sided. (b) Shows a transversal view of street with one module.

Fig. 4
Fig. 4

Microlens array plate; (a) shows its lens structure, which produces the rectangular light pattern shown in (b) when using a perfect collimated light beam. The size of the light pattern is 22 m × 12 m at 10 m distance.

Fig. 5
Fig. 5

Schemes of TIR lens and reflecting cavity. (a) Shows the modeled TIR lens for LED light collimation; the upper shows two schematic diagrams; and the bottom show a ray-tracing, and the intensity distribution. (b) Shows the reflecting cavity or housing box. Upper subfigures in (b) show the cavity modeled for central and zigzag type street lighting, and the bottom shows a new cavity we propose for single-sided type street lighting.

Fig. 6
Fig. 6

Street area for optical analysis: target regions. The dotted line in (a) and (b) draws the region for assessing delivery factor (DF) and optical utilization factor (OUF). (a) Is the small area, and (b) is the practical area. The dotted line in (c) encloses the region for illumination uniformity assessment using three luminaries. The red dots in (d) show the test points for illumination uniformity assessment. In (a)-(d), yellow circles indicate the lamp or luminaire position for the central configuration.

Fig. 7
Fig. 7

Illuminance distribution simulation in the street for central pole arrangement. (a) Shows the light pattern produced by a single module. It also shows the illuminance profile along the X and Y directions. The red dotted line shows the small region, and yellow dotted line shows the practical region. (b) Shows the light pattern due to three neighboring modules in a street area of 60 m × 12 m for different pole spacing.

Fig. 8
Fig. 8

Illuminance distribution simulation for Zigzag luminaire arrangement. (a) Shows the light pattern produced by a single module. (b) Shows the light pattern due to three neighboring modules for different pole spacing.

Fig. 9
Fig. 9

Illumination pattern in single-sided pole arrangement. (a) Shows the concept of beam-pattern mismatch. (b) Beam-pattern matching. (c) Shows the light pattern produced by a single module. (d) Shows the light pattern due to three neighboring modules for different pole spacing.

Tables (1)

Tables Icon

Table 1 Parameters of expected performance.

Metrics