Abstract

The procedure used in our previous publication [Opt. Express 20, 271, (2012)] to calculate how coupling to a spherical gold nanoparticle changes the upconversion luminescence of Er3+ ions contained several errors. The errors are corrected here.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express20(1), 271–282 (2012).
    [CrossRef] [PubMed]
  2. A. Rokhmin, N. Nikonorov, A. Przhevuskii, A. Chukharev, and A. Ul’yashenko, “Study of polarized luminescence in erbium-doped laser glasses,” Opt. Spectrosc.96(2), 168–174 (2004).
    [CrossRef]
  3. F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8, 4128–4133 (2008).
    [CrossRef] [PubMed]
  4. M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett.9(8), 3066–3071 (2009).
    [CrossRef] [PubMed]
  5. C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett.109(20), 203601 (2012).
    [CrossRef] [PubMed]
  6. T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B74(4), 045302 (2006).
    [CrossRef]
  7. M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B71(11), 115102 (2005).
    [CrossRef]
  8. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007).
    [CrossRef]
  9. U. Hohenester and A. Trugler, “Interaction of single molecules with metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron.14(6), 1430–1440 (2008).
    [CrossRef]
  10. S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys.111(1), 013109 (2012).
    [CrossRef]

2012 (3)

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express20(1), 271–282 (2012).
[CrossRef] [PubMed]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett.109(20), 203601 (2012).
[CrossRef] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys.111(1), 013109 (2012).
[CrossRef]

2009 (1)

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett.9(8), 3066–3071 (2009).
[CrossRef] [PubMed]

2008 (2)

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8, 4128–4133 (2008).
[CrossRef] [PubMed]

U. Hohenester and A. Trugler, “Interaction of single molecules with metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron.14(6), 1430–1440 (2008).
[CrossRef]

2007 (1)

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007).
[CrossRef]

2006 (1)

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B74(4), 045302 (2006).
[CrossRef]

2005 (1)

M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B71(11), 115102 (2005).
[CrossRef]

2004 (1)

A. Rokhmin, N. Nikonorov, A. Przhevuskii, A. Chukharev, and A. Ul’yashenko, “Study of polarized luminescence in erbium-doped laser glasses,” Opt. Spectrosc.96(2), 168–174 (2004).
[CrossRef]

Biner, D.

Blum, C.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett.109(20), 203601 (2012).
[CrossRef] [PubMed]

Boudreau, D.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett.9(8), 3066–3071 (2009).
[CrossRef] [PubMed]

Chukharev, A.

A. Rokhmin, N. Nikonorov, A. Przhevuskii, A. Chukharev, and A. Ul’yashenko, “Study of polarized luminescence in erbium-doped laser glasses,” Opt. Spectrosc.96(2), 168–174 (2004).
[CrossRef]

de Dood, M. J. A.

M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B71(11), 115102 (2005).
[CrossRef]

Eichelkraut, T.

Fischer, S.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express20(1), 271–282 (2012).
[CrossRef] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys.111(1), 013109 (2012).
[CrossRef]

Fujii, M.

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B74(4), 045302 (2006).
[CrossRef]

Goldschmidt, J. C.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys.111(1), 013109 (2012).
[CrossRef]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express20(1), 271–282 (2012).
[CrossRef] [PubMed]

Govorov, A. O.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007).
[CrossRef]

Hallermann, F.

Hayashi, S.

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B74(4), 045302 (2006).
[CrossRef]

Hermle, M.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys.111(1), 013109 (2012).
[CrossRef]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express20(1), 271–282 (2012).
[CrossRef] [PubMed]

Hohenester, U.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8, 4128–4133 (2008).
[CrossRef] [PubMed]

U. Hohenester and A. Trugler, “Interaction of single molecules with metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron.14(6), 1430–1440 (2008).
[CrossRef]

Inui, M.

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B74(4), 045302 (2006).
[CrossRef]

Knoester, J.

M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B71(11), 115102 (2005).
[CrossRef]

Kotov, N. A.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007).
[CrossRef]

Krämer, K. W.

Krenn, J. R.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8, 4128–4133 (2008).
[CrossRef] [PubMed]

Lagendijk, A.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett.109(20), 203601 (2012).
[CrossRef] [PubMed]

Lee, J.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007).
[CrossRef]

Leitner, A.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8, 4128–4133 (2008).
[CrossRef] [PubMed]

Lessard-Viger, M.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett.9(8), 3066–3071 (2009).
[CrossRef] [PubMed]

Löper, P.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys.111(1), 013109 (2012).
[CrossRef]

Miura, S.

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B74(4), 045302 (2006).
[CrossRef]

Mosk, A. P.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett.109(20), 203601 (2012).
[CrossRef] [PubMed]

Nakamura, T.

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B74(4), 045302 (2006).
[CrossRef]

Nikonorov, N.

A. Rokhmin, N. Nikonorov, A. Przhevuskii, A. Chukharev, and A. Ul’yashenko, “Study of polarized luminescence in erbium-doped laser glasses,” Opt. Spectrosc.96(2), 168–174 (2004).
[CrossRef]

Polman, A.

M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B71(11), 115102 (2005).
[CrossRef]

Przhevuskii, A.

A. Rokhmin, N. Nikonorov, A. Przhevuskii, A. Chukharev, and A. Ul’yashenko, “Study of polarized luminescence in erbium-doped laser glasses,” Opt. Spectrosc.96(2), 168–174 (2004).
[CrossRef]

Rainville, L.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett.9(8), 3066–3071 (2009).
[CrossRef] [PubMed]

Reil, F.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8, 4128–4133 (2008).
[CrossRef] [PubMed]

Rioux, M.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett.9(8), 3066–3071 (2009).
[CrossRef] [PubMed]

Rokhmin, A.

A. Rokhmin, N. Nikonorov, A. Przhevuskii, A. Chukharev, and A. Ul’yashenko, “Study of polarized luminescence in erbium-doped laser glasses,” Opt. Spectrosc.96(2), 168–174 (2004).
[CrossRef]

Steinkemper, H.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express20(1), 271–282 (2012).
[CrossRef] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys.111(1), 013109 (2012).
[CrossRef]

Subramaniam, V.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett.109(20), 203601 (2012).
[CrossRef] [PubMed]

Tip, A.

M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B71(11), 115102 (2005).
[CrossRef]

Trugler, A.

U. Hohenester and A. Trugler, “Interaction of single molecules with metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron.14(6), 1430–1440 (2008).
[CrossRef]

Ul’yashenko, A.

A. Rokhmin, N. Nikonorov, A. Przhevuskii, A. Chukharev, and A. Ul’yashenko, “Study of polarized luminescence in erbium-doped laser glasses,” Opt. Spectrosc.96(2), 168–174 (2004).
[CrossRef]

von Plessen, G.

Vos, W. L.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett.109(20), 203601 (2012).
[CrossRef] [PubMed]

Wubs, M.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett.109(20), 203601 (2012).
[CrossRef] [PubMed]

Zijlstra, N.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett.109(20), 203601 (2012).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Hohenester and A. Trugler, “Interaction of single molecules with metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron.14(6), 1430–1440 (2008).
[CrossRef]

J. Appl. Phys. (1)

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys.111(1), 013109 (2012).
[CrossRef]

Nano Lett. (2)

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8, 4128–4133 (2008).
[CrossRef] [PubMed]

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett.9(8), 3066–3071 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Spectrosc. (1)

A. Rokhmin, N. Nikonorov, A. Przhevuskii, A. Chukharev, and A. Ul’yashenko, “Study of polarized luminescence in erbium-doped laser glasses,” Opt. Spectrosc.96(2), 168–174 (2004).
[CrossRef]

Phys. Rev. B (3)

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B74(4), 045302 (2006).
[CrossRef]

M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B71(11), 115102 (2005).
[CrossRef]

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett.109(20), 203601 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Results of the corrected simulations: effect of a spherical gold nanoparticle with a diameter of 200 nm on the luminescence from certain transitions of the upconverter. Shown are the relative luminescence factors, i.e. the ratios of the luminescence intensities with and without the metal nanoparticle, for the transitions from 4 I 11/2, 4 I 9/2, 4 F 9/2 and 4 S 3/2 to the ground state 4 I 15/2. The white dashed line represents relative luminescence factors of unity.

Fig. 2
Fig. 2

When averaged over spherical shells around the metal nanoparticle, the luminescence is only increased by factors up to 1.14 and 1.83 for the transitions from the 4 I 11/2 and 4 I 9/2 states to the ground state 4 I 15/2, respectively. These are the transitions with the highest intensities. Close to the surface (<20 nm), the upconversion luminescence from 4 I 11/2, 4 F 9/2 and 4 S 3/2 to 4 I 15/2 is strongly suppressed.

Fig. 3
Fig. 3

Maximum value of the relative luminescence enhancement factor in the simulation volume. If the Förster energy transfer rate is modified by the local density of photon states, the relative enhancement of the luminescence will increase drastically. The relative enhancement factor is twice as high if only the radiative decay rate of the donor enters into the Förster energy transfer rate and roughly 4 times higher if the radiative decay rates of both donor and acceptor enter.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

u plasmon ( ω i f ) = γ E u ( ω i f )
A i f ,plasmon = ( γ rad + γ nonrad ) A i f ,
B i f = π 2 c 3 ω i f 3 A i f ,
B i f ,plasmon = π 2 c 3 ω i f 3 A i f ,plasmon
B i f ,plasmon = π 2 c 3 ω i f 3 ( γ rad + γ nonrad ) A i f ,
B i f ,plasmon = B i f
W i f GSA/ESA = γ E u ( ω i f ) B i f = u ( ω i f ) π 2 c 3 ω i f 3 g f g i γ E A f i
W i f STE = u ( ω i f ) π 2 c 3 ω i f 3 γ E A i f .
W i f SPE = γ rad , i f A i f .
L i = n i γ rad , i f A i f
W i f Loss = γ nonrad , i f A i f .

Metrics