Abstract

We demonstrate a new method for accessing the broad-bandwidth polarization-independent operation of a microring resonator based on the standard photonic nanostrip waveguides. The method employs the selective application of atomic layer deposition to form highly uniform TiO2 overlayers with the specific dispersion properties. The wide operation window is achieved by matching the wavelength dependencies of the free spectral ranges of the two orthogonal polarizations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010).
    [CrossRef]
  2. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
    [CrossRef]
  3. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett.29, 2861–2863 (2004).
    [CrossRef]
  4. T. Claes, D. Vermeulen, P. De Heyn, K. De Vos, G. Roelkens, D. Van Thourhout, and P. Bienstman, “Towards a silicon dual polarization ring resonator sensor for multiplexed and label-free structural analysis of molecular interactions,” XI Conf. Opt. Chem. Sens. and Biosens., P-93, 159 (2012).
  5. M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” Proc. CLEO1, 273–275 (2005).
  6. W. R. Headley, G. T. Reed, F. Gardes, A. Liu, and M. Paniccia, “Enhanced polarisation-independent optical ring resonators on silicon-on-insulator,” Proc. SPIE5730, 195–202 (2005).
    [CrossRef]
  7. D. X. Xu, P. Cheben, A. Delâge, S. Janz, B. Lamontagne, E. Post, and W. N. Ye, “Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering,” Proc. SPIE6477, Invited Paper (2007).
    [CrossRef]
  8. Z. Wang, D. Dai, and S. He, “Polarization-insensitive ultrasmall microring resonator design based on optimized Si sandwiched nanowires,” IEEE Photon. Technol. Lett.19, 759–761 (2007).
    [CrossRef]
  9. C. H. Kwan and K. S. Chiang, “Study of polarization-dependent coupling in optical waveguide directional couplers by the effective-index method with built-in perturbation correction,” J. Lightwave Technol.20, 1018–1026 (2002).
    [CrossRef]
  10. S. Park, K. J. Kim, J. M. Lee, I. G. Kim, and G. Kim, “Adjusting resonant wavelengths and spectral shapes of ring resonators using a cladding SiN layer or KOH solution,” Opt. Express17, 11884–11891 (2009).
    [CrossRef] [PubMed]
  11. Y. Kokubun, N. Kobayashi, and T. Sato, “UV trimming of polarization-independent microring resonator by internal stress and temperature control,” Opt. Express18, 906–916 (2010).
    [CrossRef] [PubMed]
  12. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett.37, 3114–3116 (2012).
    [CrossRef] [PubMed]
  13. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.2, 57–60 (2007).
    [CrossRef]
  14. R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” Appl. Phys.97, 121301 (2005).
    [CrossRef]
  15. M. Erdmanis, L. Karvonen, M. R. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, “ALD-assisted multiorder dispersion engineering of nanophotonic strip waveguides,” J. Lightwave Technol.30, 2488–2493 (2012).
    [CrossRef]
  16. A. Säynätjoki, L. Karvonen, M. Hiltunen, X. Tu, T. Y. Liow, A. Tervonen, C. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express19, 26275–26282 (2011).
    [CrossRef]
  17. Q. Chen, Y. D. Yang, and Y. Z. Huang, “Distributed mode coupling in microring channel drop filters,” Appl. Phys. Lett.89, 061118 (2006).
    [CrossRef]
  18. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36, 321–322 (2000).
    [CrossRef]
  19. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express19, 11529–11538 (2011).
    [CrossRef] [PubMed]
  20. L. Karvonen, A. Säynätjoki, Y. Chen, X. Tu, T. Y. Liow, J. Hiltunen, M. Hiltunen, G. Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photon. Technol. Lett.24, 2074–2076 (2012).
    [CrossRef]
  21. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt.49, 4321–4325 (2010).
    [CrossRef] [PubMed]
  22. F. Morichetti, A. Melloni, and M. Martinelli, “Effects of polarization rotation in optical ring-resonator-based devices,” J. Lightwave Technol.24, 573–585 (2006).
    [CrossRef]
  23. A. Delâge, D. X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-dependent model of a ring resonator sensor excited by a directional coupler,” J. Lightwave Technol.27, 1172–1180 (2009).
    [CrossRef]
  24. W. R. McKinnon, D. X. Xu, C. Storey, E. Post, A. Densmore, A. Delâge, P. Waldron, J. H. Schmid, and S. Janz, “Extracting coupling and loss coefficients from a ring resonator,” Opt. Express17, 18971–18982 (2009).
    [CrossRef]
  25. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on chip optical interconnects,” Opt. Express15, 11934–11941 (2007).
    [CrossRef] [PubMed]
  26. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun.3, 765 (2012).
    [CrossRef] [PubMed]

2012 (4)

M. Erdmanis, L. Karvonen, M. R. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, “ALD-assisted multiorder dispersion engineering of nanophotonic strip waveguides,” J. Lightwave Technol.30, 2488–2493 (2012).
[CrossRef]

S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett.37, 3114–3116 (2012).
[CrossRef] [PubMed]

L. Karvonen, A. Säynätjoki, Y. Chen, X. Tu, T. Y. Liow, J. Hiltunen, M. Hiltunen, G. Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photon. Technol. Lett.24, 2074–2076 (2012).
[CrossRef]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun.3, 765 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (3)

2009 (3)

2007 (4)

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on chip optical interconnects,” Opt. Express15, 11934–11941 (2007).
[CrossRef] [PubMed]

D. X. Xu, P. Cheben, A. Delâge, S. Janz, B. Lamontagne, E. Post, and W. N. Ye, “Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering,” Proc. SPIE6477, Invited Paper (2007).
[CrossRef]

Z. Wang, D. Dai, and S. He, “Polarization-insensitive ultrasmall microring resonator design based on optimized Si sandwiched nanowires,” IEEE Photon. Technol. Lett.19, 759–761 (2007).
[CrossRef]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.2, 57–60 (2007).
[CrossRef]

2006 (2)

F. Morichetti, A. Melloni, and M. Martinelli, “Effects of polarization rotation in optical ring-resonator-based devices,” J. Lightwave Technol.24, 573–585 (2006).
[CrossRef]

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Distributed mode coupling in microring channel drop filters,” Appl. Phys. Lett.89, 061118 (2006).
[CrossRef]

2005 (2)

R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” Appl. Phys.97, 121301 (2005).
[CrossRef]

W. R. Headley, G. T. Reed, F. Gardes, A. Liu, and M. Paniccia, “Enhanced polarisation-independent optical ring resonators on silicon-on-insulator,” Proc. SPIE5730, 195–202 (2005).
[CrossRef]

2004 (1)

2002 (1)

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36, 321–322 (2000).
[CrossRef]

Alasaarela, T.

Alloatti, L.

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.2, 57–60 (2007).
[CrossRef]

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” Proc. CLEO1, 273–275 (2005).

Bienstman, P.

T. Claes, D. Vermeulen, P. De Heyn, K. De Vos, G. Roelkens, D. Van Thourhout, and P. Bienstman, “Towards a silicon dual polarization ring resonator sensor for multiplexed and label-free structural analysis of molecular interactions,” XI Conf. Opt. Chem. Sens. and Biosens., P-93, 159 (2012).

Bolivar, P. H.

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

Cheben, P.

A. Delâge, D. X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-dependent model of a ring resonator sensor excited by a directional coupler,” J. Lightwave Technol.27, 1172–1180 (2009).
[CrossRef]

D. X. Xu, P. Cheben, A. Delâge, S. Janz, B. Lamontagne, E. Post, and W. N. Ye, “Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering,” Proc. SPIE6477, Invited Paper (2007).
[CrossRef]

Chen, Q.

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Distributed mode coupling in microring channel drop filters,” Appl. Phys. Lett.89, 061118 (2006).
[CrossRef]

Chen, Y.

L. Karvonen, A. Säynätjoki, Y. Chen, X. Tu, T. Y. Liow, J. Hiltunen, M. Hiltunen, G. Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photon. Technol. Lett.24, 2074–2076 (2012).
[CrossRef]

Chiang, K. S.

Chu, S. T.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun.3, 765 (2012).
[CrossRef] [PubMed]

Claes, T.

T. Claes, D. Vermeulen, P. De Heyn, K. De Vos, G. Roelkens, D. Van Thourhout, and P. Bienstman, “Towards a silicon dual polarization ring resonator sensor for multiplexed and label-free structural analysis of molecular interactions,” XI Conf. Opt. Chem. Sens. and Biosens., P-93, 159 (2012).

Dai, D.

Z. Wang, D. Dai, and S. He, “Polarization-insensitive ultrasmall microring resonator design based on optimized Si sandwiched nanowires,” IEEE Photon. Technol. Lett.19, 759–761 (2007).
[CrossRef]

De Heyn, P.

T. Claes, D. Vermeulen, P. De Heyn, K. De Vos, G. Roelkens, D. Van Thourhout, and P. Bienstman, “Towards a silicon dual polarization ring resonator sensor for multiplexed and label-free structural analysis of molecular interactions,” XI Conf. Opt. Chem. Sens. and Biosens., P-93, 159 (2012).

De Vos, K.

T. Claes, D. Vermeulen, P. De Heyn, K. De Vos, G. Roelkens, D. Van Thourhout, and P. Bienstman, “Towards a silicon dual polarization ring resonator sensor for multiplexed and label-free structural analysis of molecular interactions,” XI Conf. Opt. Chem. Sens. and Biosens., P-93, 159 (2012).

Delâge, A.

Densmore, A.

Eich, M.

Erdmanis, M.

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

Freude, W.

Gardes, F.

W. R. Headley, G. T. Reed, F. Gardes, A. Liu, and M. Paniccia, “Enhanced polarisation-independent optical ring resonators on silicon-on-insulator,” Proc. SPIE5730, 195–202 (2005).
[CrossRef]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010).
[CrossRef]

He, S.

Z. Wang, D. Dai, and S. He, “Polarization-insensitive ultrasmall microring resonator design based on optimized Si sandwiched nanowires,” IEEE Photon. Technol. Lett.19, 759–761 (2007).
[CrossRef]

Headley, W. R.

W. R. Headley, G. T. Reed, F. Gardes, A. Liu, and M. Paniccia, “Enhanced polarisation-independent optical ring resonators on silicon-on-insulator,” Proc. SPIE5730, 195–202 (2005).
[CrossRef]

Henschel, W.

Hiltunen, J.

L. Karvonen, A. Säynätjoki, Y. Chen, X. Tu, T. Y. Liow, J. Hiltunen, M. Hiltunen, G. Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photon. Technol. Lett.24, 2074–2076 (2012).
[CrossRef]

T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt.49, 4321–4325 (2010).
[CrossRef] [PubMed]

Hiltunen, M.

L. Karvonen, A. Säynätjoki, Y. Chen, X. Tu, T. Y. Liow, J. Hiltunen, M. Hiltunen, G. Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photon. Technol. Lett.24, 2074–2076 (2012).
[CrossRef]

A. Säynätjoki, L. Karvonen, M. Hiltunen, X. Tu, T. Y. Liow, A. Tervonen, C. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express19, 26275–26282 (2011).
[CrossRef]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Honkanen, S.

Huang, Y. Z.

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Distributed mode coupling in microring channel drop filters,” Appl. Phys. Lett.89, 061118 (2006).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.2, 57–60 (2007).
[CrossRef]

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” Proc. CLEO1, 273–275 (2005).

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Janz, S.

Jen, A. K.-Y.

Kaertner, F.

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” Proc. CLEO1, 273–275 (2005).

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.2, 57–60 (2007).
[CrossRef]

Karvonen, L.

Kim, G.

Kim, I. G.

Kim, K. J.

Kobayashi, N.

Kokubun, Y.

Korn, D.

Kuittinen, M.

Kurz, H.

Kwan, C. H.

Lamontagne, B.

A. Delâge, D. X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-dependent model of a ring resonator sensor excited by a directional coupler,” J. Lightwave Technol.27, 1172–1180 (2009).
[CrossRef]

D. X. Xu, P. Cheben, A. Delâge, S. Janz, B. Lamontagne, E. Post, and W. N. Ye, “Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering,” Proc. SPIE6477, Invited Paper (2007).
[CrossRef]

Lapointe, J.

Lee, J. M.

Leuthold, J.

Liow, T. Y.

L. Karvonen, A. Säynätjoki, Y. Chen, X. Tu, T. Y. Liow, J. Hiltunen, M. Hiltunen, G. Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photon. Technol. Lett.24, 2074–2076 (2012).
[CrossRef]

A. Säynätjoki, L. Karvonen, M. Hiltunen, X. Tu, T. Y. Liow, A. Tervonen, C. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express19, 26275–26282 (2011).
[CrossRef]

Little, B. E.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun.3, 765 (2012).
[CrossRef] [PubMed]

Liu, A.

W. R. Headley, G. T. Reed, F. Gardes, A. Liu, and M. Paniccia, “Enhanced polarisation-independent optical ring resonators on silicon-on-insulator,” Proc. SPIE5730, 195–202 (2005).
[CrossRef]

Lo, C. Q.

Lo, G. Q.

L. Karvonen, A. Säynätjoki, Y. Chen, X. Tu, T. Y. Liow, J. Hiltunen, M. Hiltunen, G. Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photon. Technol. Lett.24, 2074–2076 (2012).
[CrossRef]

Luo, J.

Martinelli, M.

McKinnon, R. W.

McKinnon, W. R.

Melloni, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

F. Morichetti, A. Melloni, and M. Martinelli, “Effects of polarization rotation in optical ring-resonator-based devices,” J. Lightwave Technol.24, 573–585 (2006).
[CrossRef]

Morandotti, R.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun.3, 765 (2012).
[CrossRef] [PubMed]

Morichetti, F.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

F. Morichetti, A. Melloni, and M. Martinelli, “Effects of polarization rotation in optical ring-resonator-based devices,” J. Lightwave Technol.24, 573–585 (2006).
[CrossRef]

Moss, D. J.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun.3, 765 (2012).
[CrossRef] [PubMed]

Niehusmann, J.

Pale, V.

Palmer, R.

Paniccia, M.

W. R. Headley, G. T. Reed, F. Gardes, A. Liu, and M. Paniccia, “Enhanced polarisation-independent optical ring resonators on silicon-on-insulator,” Proc. SPIE5730, 195–202 (2005).
[CrossRef]

Park, S.

Park, Y.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun.3, 765 (2012).
[CrossRef] [PubMed]

Pasquazi, A.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun.3, 765 (2012).
[CrossRef] [PubMed]

Peccianti, M.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun.3, 765 (2012).
[CrossRef] [PubMed]

Petrov, A. Y.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.2, 57–60 (2007).
[CrossRef]

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” Proc. CLEO1, 273–275 (2005).

Post, E.

Prorok, S.

Puurunen, R. L.

R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” Appl. Phys.97, 121301 (2005).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.2, 57–60 (2007).
[CrossRef]

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” Proc. CLEO1, 273–275 (2005).

Reed, G. T.

W. R. Headley, G. T. Reed, F. Gardes, A. Liu, and M. Paniccia, “Enhanced polarisation-independent optical ring resonators on silicon-on-insulator,” Proc. SPIE5730, 195–202 (2005).
[CrossRef]

Roelkens, G.

T. Claes, D. Vermeulen, P. De Heyn, K. De Vos, G. Roelkens, D. Van Thourhout, and P. Bienstman, “Towards a silicon dual polarization ring resonator sensor for multiplexed and label-free structural analysis of molecular interactions,” XI Conf. Opt. Chem. Sens. and Biosens., P-93, 159 (2012).

Rooks, M.

Ruoho, M.

Saastamoinen, T.

Saleem, M. R.

Samarelli, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

Sato, T.

Säynätjoki, A.

Schmid, J. H.

Sekaric, L.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.2, 57–60 (2007).
[CrossRef]

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” Proc. CLEO1, 273–275 (2005).

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.2, 57–60 (2007).
[CrossRef]

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” Proc. CLEO1, 273–275 (2005).

Sorel, M.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Stenberg, P.

Storey, C.

Tervonen, A.

Tittonen, I.

Tu, X.

L. Karvonen, A. Säynätjoki, Y. Chen, X. Tu, T. Y. Liow, J. Hiltunen, M. Hiltunen, G. Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photon. Technol. Lett.24, 2074–2076 (2012).
[CrossRef]

A. Säynätjoki, L. Karvonen, M. Hiltunen, X. Tu, T. Y. Liow, A. Tervonen, C. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express19, 26275–26282 (2011).
[CrossRef]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Van Thourhout, D.

T. Claes, D. Vermeulen, P. De Heyn, K. De Vos, G. Roelkens, D. Van Thourhout, and P. Bienstman, “Towards a silicon dual polarization ring resonator sensor for multiplexed and label-free structural analysis of molecular interactions,” XI Conf. Opt. Chem. Sens. and Biosens., P-93, 159 (2012).

Vermeulen, D.

T. Claes, D. Vermeulen, P. De Heyn, K. De Vos, G. Roelkens, D. Van Thourhout, and P. Bienstman, “Towards a silicon dual polarization ring resonator sensor for multiplexed and label-free structural analysis of molecular interactions,” XI Conf. Opt. Chem. Sens. and Biosens., P-93, 159 (2012).

Vlasov, Y.

Vörckel, A.

Wahlbrink, T.

Waldron, P.

Wang, Z.

Z. Wang, D. Dai, and S. He, “Polarization-insensitive ultrasmall microring resonator design based on optimized Si sandwiched nanowires,” IEEE Photon. Technol. Lett.19, 759–761 (2007).
[CrossRef]

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.2, 57–60 (2007).
[CrossRef]

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” Proc. CLEO1, 273–275 (2005).

Xia, F.

Xu, D. X.

Yang, Y. D.

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Distributed mode coupling in microring channel drop filters,” Appl. Phys. Lett.89, 061118 (2006).
[CrossRef]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36, 321–322 (2000).
[CrossRef]

Ye, W. N.

D. X. Xu, P. Cheben, A. Delâge, S. Janz, B. Lamontagne, E. Post, and W. N. Ye, “Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering,” Proc. SPIE6477, Invited Paper (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” Appl. Phys.97, 121301 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Distributed mode coupling in microring channel drop filters,” Appl. Phys. Lett.89, 061118 (2006).
[CrossRef]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36, 321–322 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Wang, D. Dai, and S. He, “Polarization-insensitive ultrasmall microring resonator design based on optimized Si sandwiched nanowires,” IEEE Photon. Technol. Lett.19, 759–761 (2007).
[CrossRef]

L. Karvonen, A. Säynätjoki, Y. Chen, X. Tu, T. Y. Liow, J. Hiltunen, M. Hiltunen, G. Q. Lo, and S. Honkanen, “Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition,” IEEE Photon. Technol. Lett.24, 2074–2076 (2012).
[CrossRef]

J. Lightwave Technol. (4)

Nat. Commun. (2)

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun.3, 765 (2012).
[CrossRef] [PubMed]

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

Nat. Photon. (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.2, 57–60 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (2)

W. R. Headley, G. T. Reed, F. Gardes, A. Liu, and M. Paniccia, “Enhanced polarisation-independent optical ring resonators on silicon-on-insulator,” Proc. SPIE5730, 195–202 (2005).
[CrossRef]

D. X. Xu, P. Cheben, A. Delâge, S. Janz, B. Lamontagne, E. Post, and W. N. Ye, “Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering,” Proc. SPIE6477, Invited Paper (2007).
[CrossRef]

Other (2)

T. Claes, D. Vermeulen, P. De Heyn, K. De Vos, G. Roelkens, D. Van Thourhout, and P. Bienstman, “Towards a silicon dual polarization ring resonator sensor for multiplexed and label-free structural analysis of molecular interactions,” XI Conf. Opt. Chem. Sens. and Biosens., P-93, 159 (2012).

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” Proc. CLEO1, 273–275 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scanning electron micrograph of the fabricated sample taken with an angle of 52 degrees with respect to the normal of the surface, and (b) schematic drawing of the ALD deposition stage.

Fig. 2
Fig. 2

(a, d, g, j) Scanning electron micrographs of the coupling region covered by the different TiO2 overlayer thicknesses. The corresponding resonator transmission spectra for (b, e, h, k) quasi-TE and (c, f, i, l) quasi-TM polarizations.

Fig. 3
Fig. 3

Wavelength dependence of the free spectral range for the two input polarizations: blue - TE, red - TM. Experimental data (dots) is approximated by the fit curves (solid lines). The plots correspond to the following thicknesses of TiO2 overlayer: (a) - 0 nm, (b) - 50 nm, (c) - 100 nm, and (d) - 150 nm.

Fig. 4
Fig. 4

Transmission spectra of the ring resonator with the 300 nm gap and the 150-nm-thick TiO2 overlayer. Input polarizations are: blue - TE, red - TM.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T ( λ ) = α 2 + t 2 2 α t cos ( θ + ϕ ( λ ) ) 1 + α 2 t 2 2 α t cos ( θ + ϕ ( λ ) ) ,
ϕ ( λ ) = 2 π L n eff ( λ ) λ .
FSR ( λ ) = λ 2 L n g ( λ ) .
n g ( λ ) = n eff ( λ ) λ d n eff ( λ ) d λ .

Metrics