Abstract

Four-element modified uni-traveling-carrier (MUTC) photodiode arrays (PDA) flip-chip bonded onto transmission lines on AlN substrates are demonstrated. High RF output powers of 26.2 dBm and 21.0 dBm are achieved at 35 GHz and 48 GHz, respectively, using a PDA with 28-μm diameter photodiodes. A systematic comparison between a PDA with four 20 μm-diameter elements and a discrete detector with the same active area (40-μm diameter) is presented. The PDA achieved higher output power and thermal dissipation compared to its discrete counterpart.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Beling and J. C. Campbell, “Photodetectors,” in Fibre Optic Communication, H. Venghaus and N. Grote eds. (Springer, 2012).
  2. X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
    [CrossRef]
  3. Z. Li, H. Pan, H. Chen, A. Beling, and J. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
    [CrossRef]
  4. C. Goldsmith, G. Magel, and R. Baca, “Principles and performance of traveling-wave photodetector arrays,” IEEE Trans. Microw. Theory Tech.45(8), 1342–1350 (1997).
    [CrossRef]
  5. T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IECIE Trans. Electron.E83-C, 938–949 (2000).
  6. B. C. Wadell, Transmission Line Design Handbook (Artech House, 1991).
  7. M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
    [CrossRef]
  8. A. Beling, H. Chen, H. Pan, and J. Campbell, “High-power monolithically integrated traveling wave photodiode array,” IEEE Photon. Technol. Lett.21(24), 1813–1815 (2009).
    [CrossRef]
  9. Q. Zhou, A. Cross, Y. Fu, A. Beling, and J. Campbell, “High-power high-bandwidth flip-chip bonded modified uni-traveling carrier photodiodes,” in Proceedings of IEEE Photonics Conference, (Institute of Electrical and Electronics Engineers, San Francisco, 2012), 306–307.
    [CrossRef]

2010 (1)

Z. Li, H. Pan, H. Chen, A. Beling, and J. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

2009 (1)

A. Beling, H. Chen, H. Pan, and J. Campbell, “High-power monolithically integrated traveling wave photodiode array,” IEEE Photon. Technol. Lett.21(24), 1813–1815 (2009).
[CrossRef]

2007 (1)

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

2000 (1)

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IECIE Trans. Electron.E83-C, 938–949 (2000).

1997 (1)

C. Goldsmith, G. Magel, and R. Baca, “Principles and performance of traveling-wave photodetector arrays,” IEEE Trans. Microw. Theory Tech.45(8), 1342–1350 (1997).
[CrossRef]

1994 (1)

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

Allen, S.

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

Baca, R.

C. Goldsmith, G. Magel, and R. Baca, “Principles and performance of traveling-wave photodetector arrays,” IEEE Trans. Microw. Theory Tech.45(8), 1342–1350 (1997).
[CrossRef]

Beling, A.

Z. Li, H. Pan, H. Chen, A. Beling, and J. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

A. Beling, H. Chen, H. Pan, and J. Campbell, “High-power monolithically integrated traveling wave photodiode array,” IEEE Photon. Technol. Lett.21(24), 1813–1815 (2009).
[CrossRef]

Bhattacharya, U.

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

Campbell, J.

Z. Li, H. Pan, H. Chen, A. Beling, and J. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

A. Beling, H. Chen, H. Pan, and J. Campbell, “High-power monolithically integrated traveling wave photodiode array,” IEEE Photon. Technol. Lett.21(24), 1813–1815 (2009).
[CrossRef]

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

Carman, E.

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

Case, M.

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

Chen, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

A. Beling, H. Chen, H. Pan, and J. Campbell, “High-power monolithically integrated traveling wave photodiode array,” IEEE Photon. Technol. Lett.21(24), 1813–1815 (2009).
[CrossRef]

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

Duan, N.

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

Furuta, T.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IECIE Trans. Electron.E83-C, 938–949 (2000).

Fushimi, H.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IECIE Trans. Electron.E83-C, 938–949 (2000).

Goldsmith, C.

C. Goldsmith, G. Magel, and R. Baca, “Principles and performance of traveling-wave photodetector arrays,” IEEE Trans. Microw. Theory Tech.45(8), 1342–1350 (1997).
[CrossRef]

Ishibashi, T.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IECIE Trans. Electron.E83-C, 938–949 (2000).

Ito, H.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IECIE Trans. Electron.E83-C, 938–949 (2000).

Kamegawa, M.

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

Kodama, S.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IECIE Trans. Electron.E83-C, 938–949 (2000).

Konishi, Y.

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

Li, Z.

Z. Li, H. Pan, H. Chen, A. Beling, and J. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

Magel, G.

C. Goldsmith, G. Magel, and R. Baca, “Principles and performance of traveling-wave photodetector arrays,” IEEE Trans. Microw. Theory Tech.45(8), 1342–1350 (1997).
[CrossRef]

Miyamoto, Y.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IECIE Trans. Electron.E83-C, 938–949 (2000).

Nagatsuma, T.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IECIE Trans. Electron.E83-C, 938–949 (2000).

Pan, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

A. Beling, H. Chen, H. Pan, and J. Campbell, “High-power monolithically integrated traveling wave photodiode array,” IEEE Photon. Technol. Lett.21(24), 1813–1815 (2009).
[CrossRef]

Pullela, R.

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

Pusl, J.

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

Reddy, M.

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

Rodwell, M.

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

Shimizu, N.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IECIE Trans. Electron.E83-C, 938–949 (2000).

Wang, X.

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

Yu, R.

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

IECIE Trans. Electron. (1)

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IECIE Trans. Electron.E83-C, 938–949 (2000).

IEEE J. Quantum Electron. (1)

Z. Li, H. Pan, H. Chen, A. Beling, and J. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

A. Beling, H. Chen, H. Pan, and J. Campbell, “High-power monolithically integrated traveling wave photodiode array,” IEEE Photon. Technol. Lett.21(24), 1813–1815 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

C. Goldsmith, G. Magel, and R. Baca, “Principles and performance of traveling-wave photodetector arrays,” IEEE Trans. Microw. Theory Tech.45(8), 1342–1350 (1997).
[CrossRef]

Proc. IEEE (1)

M. Rodwell, S. Allen, R. Yu, M. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog],” Proc. IEEE82(7), 1037–1059 (1994).
[CrossRef]

Other (3)

A. Beling and J. C. Campbell, “Photodetectors,” in Fibre Optic Communication, H. Venghaus and N. Grote eds. (Springer, 2012).

Q. Zhou, A. Cross, Y. Fu, A. Beling, and J. Campbell, “High-power high-bandwidth flip-chip bonded modified uni-traveling carrier photodiodes,” in Proceedings of IEEE Photonics Conference, (Institute of Electrical and Electronics Engineers, San Francisco, 2012), 306–307.
[CrossRef]

B. C. Wadell, Transmission Line Design Handbook (Artech House, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Superimposed photo of a segment of the MUTC chip (dash-line) with four diodes (PD1 – PD4) and the AlN submount with coplanar transmission line.

Fig. 2
Fig. 2

Individual element (PD1 – PD4) time-domain measurements of an open-ended PDA with an additional 2-cm long transmission line. Delay time from initial pulse to reflected pulse is given for each diode.

Fig. 3
Fig. 3

Z0 extracted from S-parameter measurements for PDA-20, PDA-28, and PDA-40. Dotted lines are the impedances calculated from v0 for each detector.

Fig. 4
Fig. 4

Frequency responses of PDA-20 (solid squares) with a 50-Ω load at the termination port and DPD-40 (empty squares).

Fig. 5
Fig. 5

Frequency response for PDA-20 comparing individual illumination of PD1-PD4 and combined illumination (dotted – summed response of individual diode response).

Fig. 6
Fig. 6

(a) Comparison of current dependence of power output for PDA-20, DPD-40, and DPD-20 taken at 48 GHz. (b) PDA-28 RF output power versus current at both 38 GHz and 48 GHz. Dotted lines are ideal output powers for a 50-Ω load.

Fig. 7
Fig. 7

Summary of RF output powers for MUTC-based discrete (solid) and PDA (empty) detectors.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Z 0 = L cpw C ' cpw +( C pd /d) ,

Metrics