Abstract

Optical properties of the FePt-C nanocomposite thin film that was synthesized by sputtering with MgO/NiTa underlayer on glass substrate have been determined by an approach combining spectroscopic ellipsometry and transmission over the wavelength range of 380 – 1700 nm. It was observed that the refractive index is larger than the extinction coefficient, indicating that free electron absorption is not the dominant optical transition in the FePt-C thin film. Compared with FePt thin film, the FePt-C thin film has smaller optical constants, which lead to better optical performance including smaller optical spot on recording media and higher transducer efficiency for heat assisted magnetic recording.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suzuki, H. Muraoka, Y. Nakamura, and K. Ouchi, “Design and recording properties of FePt perpendicular media,” IEEE Trans. Magn.39(2), 691–696 (2003).
    [CrossRef]
  2. J. S. Chen, J. F. Hu, B. C. Lim, Y. F. Ding, G. M. Chow, and G. Ju, “Development of L10 FePt:C (001) thin films with high coercivity and small grain size for ultra-high-density magnetic recording media,” IEEE Trans. Magn.45(2), 839–844 (2009).
    [CrossRef]
  3. K. F. Dong, H. H. Li, Y. G. Peng, G. Ju, G. M. Chow, and J. S. Chen, “Well-isolated L10 FePt-SiNx-C nanocomposite films with large coercivity and small grain size,” J. Appl. Phys.111(7), 07A308 (2012).
    [CrossRef]
  4. J. S. Chen, B. C. Lim, Y. F. Ding, J. F. Hu, G. M. Chow, and G. Ju, “Granular L10 FePt-X (X=C, TiO2, Ta2O5) (001) nanocomposite films with small grain size for high density magnetic recording,” J. Appl. Phys.105(7), 07B702 (2009).
    [CrossRef]
  5. S. D. Granz and M. H. Kryder, “Granular L10 FePt (001) thin films for Heat Assisted Magnetic Recording,” J. Magn. Magn. Mater.324(3), 287–294 (2012).
    [CrossRef]
  6. T. Song, T. J. Zhou, C. L. Chen, and H. Gong, “XPS study of thermal effects on FePt and FePtAg nanoparticles,” IEEE Trans. Magn.41(10), 3367–3369 (2005).
    [CrossRef]
  7. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE96(11), 1810–1835 (2008).
    [CrossRef]
  8. S. J. Lee, A. C. C. Yu, C. C. H. Lo, and M. Fan, “Optical properties of monodispersive FePt nanoparticle films,” Phys. Status Solidi201(13), 3031–3036 (2004) (a).
    [CrossRef]
  9. S. L. Lee, C. C. H. Lo, A. C. C. Yu, and M. Fan, “Spectroscopic ellipsometry study of FePt nanoparticle films,” Phys. Status Solidi203(15), 3801–3804 (2006) (a).
    [CrossRef]
  10. J. F. Hu, J. S. Chen, B. C. Lim, and B. Liu, “Underlayer diffusion-induced enhancement of coercivity in high anisotropy FePt thin films,” J. Magn. Magn. Mater.320(22), 3068–3070 (2008).
    [CrossRef]
  11. G. K. Pribil, B. Johs, and N. J. Ianno, “Dielectric function of thin metal films by combined in situ transmission ellipsometry and intensity measurements,” Thin Solid Films455–456, 443–449 (2004).
    [CrossRef]
  12. Y. H. Yang and J. R. Abelson, “Spectroscopic ellipsometry of thin films on transparent substrates: A formalism for data interpretation,” J. Vac. Sci. Technol. A13(3), 1145–1149 (1995).
    [CrossRef]
  13. B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B39(3), 165–170 (1986).
    [CrossRef]
  14. N. Zhou, E. C. Kinzel, and X. F. Xu, “Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording,” Appl. Opt.50(31), G42–G46 (2011).
    [CrossRef] [PubMed]
  15. D. A. G. Bruggeman, “Calculation of various physics constants in heterogenous substances I. Dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. (Leipzig)24(7), 636–664 (1935).
  16. S. Logothetidis, M. Gioti, S. Lousinian, and S. Fotiadou, “Haemocompatibility studies on carbon-based thin films by ellipsometry,” Thin Solid Films482(1-2), 126–132 (2005).
    [CrossRef]
  17. E. S. Kooij, H. Wormeester, E. A. M. Brouwer, E. van Vroonhoven, A. van Silfhout, and B. Poelsema, “Optical characterization of thin colloidal gold films by spectroscopic ellipsometry,” Langmuir18(11), 4401–4413 (2002).
    [CrossRef]
  18. C. Q. Sun, “Size dependence of nanostructures: Impact of bond order deficiency,” Prog. Solid State Chem.35(1), 1–159 (2007).
    [CrossRef]
  19. B. X. Xu, Z. H. Cen, Y. T. Toh, J. M. Li, K. D. Ye, and J. Zhang, “Efficiency analysis of near field optical transducer used in heat-assisted magnetic recording,” IEEE Trans. Magn. (to be published).

2012 (2)

K. F. Dong, H. H. Li, Y. G. Peng, G. Ju, G. M. Chow, and J. S. Chen, “Well-isolated L10 FePt-SiNx-C nanocomposite films with large coercivity and small grain size,” J. Appl. Phys.111(7), 07A308 (2012).
[CrossRef]

S. D. Granz and M. H. Kryder, “Granular L10 FePt (001) thin films for Heat Assisted Magnetic Recording,” J. Magn. Magn. Mater.324(3), 287–294 (2012).
[CrossRef]

2011 (1)

2009 (2)

J. S. Chen, B. C. Lim, Y. F. Ding, J. F. Hu, G. M. Chow, and G. Ju, “Granular L10 FePt-X (X=C, TiO2, Ta2O5) (001) nanocomposite films with small grain size for high density magnetic recording,” J. Appl. Phys.105(7), 07B702 (2009).
[CrossRef]

J. S. Chen, J. F. Hu, B. C. Lim, Y. F. Ding, G. M. Chow, and G. Ju, “Development of L10 FePt:C (001) thin films with high coercivity and small grain size for ultra-high-density magnetic recording media,” IEEE Trans. Magn.45(2), 839–844 (2009).
[CrossRef]

2008 (2)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE96(11), 1810–1835 (2008).
[CrossRef]

J. F. Hu, J. S. Chen, B. C. Lim, and B. Liu, “Underlayer diffusion-induced enhancement of coercivity in high anisotropy FePt thin films,” J. Magn. Magn. Mater.320(22), 3068–3070 (2008).
[CrossRef]

2007 (1)

C. Q. Sun, “Size dependence of nanostructures: Impact of bond order deficiency,” Prog. Solid State Chem.35(1), 1–159 (2007).
[CrossRef]

2006 (1)

S. L. Lee, C. C. H. Lo, A. C. C. Yu, and M. Fan, “Spectroscopic ellipsometry study of FePt nanoparticle films,” Phys. Status Solidi203(15), 3801–3804 (2006) (a).
[CrossRef]

2005 (2)

S. Logothetidis, M. Gioti, S. Lousinian, and S. Fotiadou, “Haemocompatibility studies on carbon-based thin films by ellipsometry,” Thin Solid Films482(1-2), 126–132 (2005).
[CrossRef]

T. Song, T. J. Zhou, C. L. Chen, and H. Gong, “XPS study of thermal effects on FePt and FePtAg nanoparticles,” IEEE Trans. Magn.41(10), 3367–3369 (2005).
[CrossRef]

2004 (2)

S. J. Lee, A. C. C. Yu, C. C. H. Lo, and M. Fan, “Optical properties of monodispersive FePt nanoparticle films,” Phys. Status Solidi201(13), 3031–3036 (2004) (a).
[CrossRef]

G. K. Pribil, B. Johs, and N. J. Ianno, “Dielectric function of thin metal films by combined in situ transmission ellipsometry and intensity measurements,” Thin Solid Films455–456, 443–449 (2004).
[CrossRef]

2003 (1)

T. Suzuki, H. Muraoka, Y. Nakamura, and K. Ouchi, “Design and recording properties of FePt perpendicular media,” IEEE Trans. Magn.39(2), 691–696 (2003).
[CrossRef]

2002 (1)

E. S. Kooij, H. Wormeester, E. A. M. Brouwer, E. van Vroonhoven, A. van Silfhout, and B. Poelsema, “Optical characterization of thin colloidal gold films by spectroscopic ellipsometry,” Langmuir18(11), 4401–4413 (2002).
[CrossRef]

1995 (1)

Y. H. Yang and J. R. Abelson, “Spectroscopic ellipsometry of thin films on transparent substrates: A formalism for data interpretation,” J. Vac. Sci. Technol. A13(3), 1145–1149 (1995).
[CrossRef]

1986 (1)

B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B39(3), 165–170 (1986).
[CrossRef]

1935 (1)

D. A. G. Bruggeman, “Calculation of various physics constants in heterogenous substances I. Dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. (Leipzig)24(7), 636–664 (1935).

Abelson, J. R.

Y. H. Yang and J. R. Abelson, “Spectroscopic ellipsometry of thin films on transparent substrates: A formalism for data interpretation,” J. Vac. Sci. Technol. A13(3), 1145–1149 (1995).
[CrossRef]

Brouwer, E. A. M.

E. S. Kooij, H. Wormeester, E. A. M. Brouwer, E. van Vroonhoven, A. van Silfhout, and B. Poelsema, “Optical characterization of thin colloidal gold films by spectroscopic ellipsometry,” Langmuir18(11), 4401–4413 (2002).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Calculation of various physics constants in heterogenous substances I. Dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. (Leipzig)24(7), 636–664 (1935).

Cen, Z. H.

B. X. Xu, Z. H. Cen, Y. T. Toh, J. M. Li, K. D. Ye, and J. Zhang, “Efficiency analysis of near field optical transducer used in heat-assisted magnetic recording,” IEEE Trans. Magn. (to be published).

Challener, W. A.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE96(11), 1810–1835 (2008).
[CrossRef]

Chen, C. L.

T. Song, T. J. Zhou, C. L. Chen, and H. Gong, “XPS study of thermal effects on FePt and FePtAg nanoparticles,” IEEE Trans. Magn.41(10), 3367–3369 (2005).
[CrossRef]

Chen, J. S.

K. F. Dong, H. H. Li, Y. G. Peng, G. Ju, G. M. Chow, and J. S. Chen, “Well-isolated L10 FePt-SiNx-C nanocomposite films with large coercivity and small grain size,” J. Appl. Phys.111(7), 07A308 (2012).
[CrossRef]

J. S. Chen, J. F. Hu, B. C. Lim, Y. F. Ding, G. M. Chow, and G. Ju, “Development of L10 FePt:C (001) thin films with high coercivity and small grain size for ultra-high-density magnetic recording media,” IEEE Trans. Magn.45(2), 839–844 (2009).
[CrossRef]

J. S. Chen, B. C. Lim, Y. F. Ding, J. F. Hu, G. M. Chow, and G. Ju, “Granular L10 FePt-X (X=C, TiO2, Ta2O5) (001) nanocomposite films with small grain size for high density magnetic recording,” J. Appl. Phys.105(7), 07B702 (2009).
[CrossRef]

J. F. Hu, J. S. Chen, B. C. Lim, and B. Liu, “Underlayer diffusion-induced enhancement of coercivity in high anisotropy FePt thin films,” J. Magn. Magn. Mater.320(22), 3068–3070 (2008).
[CrossRef]

Chow, G. M.

K. F. Dong, H. H. Li, Y. G. Peng, G. Ju, G. M. Chow, and J. S. Chen, “Well-isolated L10 FePt-SiNx-C nanocomposite films with large coercivity and small grain size,” J. Appl. Phys.111(7), 07A308 (2012).
[CrossRef]

J. S. Chen, J. F. Hu, B. C. Lim, Y. F. Ding, G. M. Chow, and G. Ju, “Development of L10 FePt:C (001) thin films with high coercivity and small grain size for ultra-high-density magnetic recording media,” IEEE Trans. Magn.45(2), 839–844 (2009).
[CrossRef]

J. S. Chen, B. C. Lim, Y. F. Ding, J. F. Hu, G. M. Chow, and G. Ju, “Granular L10 FePt-X (X=C, TiO2, Ta2O5) (001) nanocomposite films with small grain size for high density magnetic recording,” J. Appl. Phys.105(7), 07B702 (2009).
[CrossRef]

Ding, Y. F.

J. S. Chen, B. C. Lim, Y. F. Ding, J. F. Hu, G. M. Chow, and G. Ju, “Granular L10 FePt-X (X=C, TiO2, Ta2O5) (001) nanocomposite films with small grain size for high density magnetic recording,” J. Appl. Phys.105(7), 07B702 (2009).
[CrossRef]

J. S. Chen, J. F. Hu, B. C. Lim, Y. F. Ding, G. M. Chow, and G. Ju, “Development of L10 FePt:C (001) thin films with high coercivity and small grain size for ultra-high-density magnetic recording media,” IEEE Trans. Magn.45(2), 839–844 (2009).
[CrossRef]

Dong, K. F.

K. F. Dong, H. H. Li, Y. G. Peng, G. Ju, G. M. Chow, and J. S. Chen, “Well-isolated L10 FePt-SiNx-C nanocomposite films with large coercivity and small grain size,” J. Appl. Phys.111(7), 07A308 (2012).
[CrossRef]

Erden, M. F.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE96(11), 1810–1835 (2008).
[CrossRef]

Fan, M.

S. L. Lee, C. C. H. Lo, A. C. C. Yu, and M. Fan, “Spectroscopic ellipsometry study of FePt nanoparticle films,” Phys. Status Solidi203(15), 3801–3804 (2006) (a).
[CrossRef]

S. J. Lee, A. C. C. Yu, C. C. H. Lo, and M. Fan, “Optical properties of monodispersive FePt nanoparticle films,” Phys. Status Solidi201(13), 3031–3036 (2004) (a).
[CrossRef]

Fotiadou, S.

S. Logothetidis, M. Gioti, S. Lousinian, and S. Fotiadou, “Haemocompatibility studies on carbon-based thin films by ellipsometry,” Thin Solid Films482(1-2), 126–132 (2005).
[CrossRef]

Gage, E. C.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE96(11), 1810–1835 (2008).
[CrossRef]

Gioti, M.

S. Logothetidis, M. Gioti, S. Lousinian, and S. Fotiadou, “Haemocompatibility studies on carbon-based thin films by ellipsometry,” Thin Solid Films482(1-2), 126–132 (2005).
[CrossRef]

Gong, H.

T. Song, T. J. Zhou, C. L. Chen, and H. Gong, “XPS study of thermal effects on FePt and FePtAg nanoparticles,” IEEE Trans. Magn.41(10), 3367–3369 (2005).
[CrossRef]

Granz, S. D.

S. D. Granz and M. H. Kryder, “Granular L10 FePt (001) thin films for Heat Assisted Magnetic Recording,” J. Magn. Magn. Mater.324(3), 287–294 (2012).
[CrossRef]

Harbecke, B.

B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B39(3), 165–170 (1986).
[CrossRef]

Hsia, Y. T.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE96(11), 1810–1835 (2008).
[CrossRef]

Hu, J. F.

J. S. Chen, J. F. Hu, B. C. Lim, Y. F. Ding, G. M. Chow, and G. Ju, “Development of L10 FePt:C (001) thin films with high coercivity and small grain size for ultra-high-density magnetic recording media,” IEEE Trans. Magn.45(2), 839–844 (2009).
[CrossRef]

J. S. Chen, B. C. Lim, Y. F. Ding, J. F. Hu, G. M. Chow, and G. Ju, “Granular L10 FePt-X (X=C, TiO2, Ta2O5) (001) nanocomposite films with small grain size for high density magnetic recording,” J. Appl. Phys.105(7), 07B702 (2009).
[CrossRef]

J. F. Hu, J. S. Chen, B. C. Lim, and B. Liu, “Underlayer diffusion-induced enhancement of coercivity in high anisotropy FePt thin films,” J. Magn. Magn. Mater.320(22), 3068–3070 (2008).
[CrossRef]

Ianno, N. J.

G. K. Pribil, B. Johs, and N. J. Ianno, “Dielectric function of thin metal films by combined in situ transmission ellipsometry and intensity measurements,” Thin Solid Films455–456, 443–449 (2004).
[CrossRef]

Johs, B.

G. K. Pribil, B. Johs, and N. J. Ianno, “Dielectric function of thin metal films by combined in situ transmission ellipsometry and intensity measurements,” Thin Solid Films455–456, 443–449 (2004).
[CrossRef]

Ju, G.

K. F. Dong, H. H. Li, Y. G. Peng, G. Ju, G. M. Chow, and J. S. Chen, “Well-isolated L10 FePt-SiNx-C nanocomposite films with large coercivity and small grain size,” J. Appl. Phys.111(7), 07A308 (2012).
[CrossRef]

J. S. Chen, J. F. Hu, B. C. Lim, Y. F. Ding, G. M. Chow, and G. Ju, “Development of L10 FePt:C (001) thin films with high coercivity and small grain size for ultra-high-density magnetic recording media,” IEEE Trans. Magn.45(2), 839–844 (2009).
[CrossRef]

J. S. Chen, B. C. Lim, Y. F. Ding, J. F. Hu, G. M. Chow, and G. Ju, “Granular L10 FePt-X (X=C, TiO2, Ta2O5) (001) nanocomposite films with small grain size for high density magnetic recording,” J. Appl. Phys.105(7), 07B702 (2009).
[CrossRef]

Ju, G. P.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE96(11), 1810–1835 (2008).
[CrossRef]

Kinzel, E. C.

Kooij, E. S.

E. S. Kooij, H. Wormeester, E. A. M. Brouwer, E. van Vroonhoven, A. van Silfhout, and B. Poelsema, “Optical characterization of thin colloidal gold films by spectroscopic ellipsometry,” Langmuir18(11), 4401–4413 (2002).
[CrossRef]

Kryder, M. H.

S. D. Granz and M. H. Kryder, “Granular L10 FePt (001) thin films for Heat Assisted Magnetic Recording,” J. Magn. Magn. Mater.324(3), 287–294 (2012).
[CrossRef]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE96(11), 1810–1835 (2008).
[CrossRef]

Lee, S. J.

S. J. Lee, A. C. C. Yu, C. C. H. Lo, and M. Fan, “Optical properties of monodispersive FePt nanoparticle films,” Phys. Status Solidi201(13), 3031–3036 (2004) (a).
[CrossRef]

Lee, S. L.

S. L. Lee, C. C. H. Lo, A. C. C. Yu, and M. Fan, “Spectroscopic ellipsometry study of FePt nanoparticle films,” Phys. Status Solidi203(15), 3801–3804 (2006) (a).
[CrossRef]

Li, H. H.

K. F. Dong, H. H. Li, Y. G. Peng, G. Ju, G. M. Chow, and J. S. Chen, “Well-isolated L10 FePt-SiNx-C nanocomposite films with large coercivity and small grain size,” J. Appl. Phys.111(7), 07A308 (2012).
[CrossRef]

Li, J. M.

B. X. Xu, Z. H. Cen, Y. T. Toh, J. M. Li, K. D. Ye, and J. Zhang, “Efficiency analysis of near field optical transducer used in heat-assisted magnetic recording,” IEEE Trans. Magn. (to be published).

Lim, B. C.

J. S. Chen, B. C. Lim, Y. F. Ding, J. F. Hu, G. M. Chow, and G. Ju, “Granular L10 FePt-X (X=C, TiO2, Ta2O5) (001) nanocomposite films with small grain size for high density magnetic recording,” J. Appl. Phys.105(7), 07B702 (2009).
[CrossRef]

J. S. Chen, J. F. Hu, B. C. Lim, Y. F. Ding, G. M. Chow, and G. Ju, “Development of L10 FePt:C (001) thin films with high coercivity and small grain size for ultra-high-density magnetic recording media,” IEEE Trans. Magn.45(2), 839–844 (2009).
[CrossRef]

J. F. Hu, J. S. Chen, B. C. Lim, and B. Liu, “Underlayer diffusion-induced enhancement of coercivity in high anisotropy FePt thin films,” J. Magn. Magn. Mater.320(22), 3068–3070 (2008).
[CrossRef]

Liu, B.

J. F. Hu, J. S. Chen, B. C. Lim, and B. Liu, “Underlayer diffusion-induced enhancement of coercivity in high anisotropy FePt thin films,” J. Magn. Magn. Mater.320(22), 3068–3070 (2008).
[CrossRef]

Lo, C. C. H.

S. L. Lee, C. C. H. Lo, A. C. C. Yu, and M. Fan, “Spectroscopic ellipsometry study of FePt nanoparticle films,” Phys. Status Solidi203(15), 3801–3804 (2006) (a).
[CrossRef]

S. J. Lee, A. C. C. Yu, C. C. H. Lo, and M. Fan, “Optical properties of monodispersive FePt nanoparticle films,” Phys. Status Solidi201(13), 3031–3036 (2004) (a).
[CrossRef]

Logothetidis, S.

S. Logothetidis, M. Gioti, S. Lousinian, and S. Fotiadou, “Haemocompatibility studies on carbon-based thin films by ellipsometry,” Thin Solid Films482(1-2), 126–132 (2005).
[CrossRef]

Lousinian, S.

S. Logothetidis, M. Gioti, S. Lousinian, and S. Fotiadou, “Haemocompatibility studies on carbon-based thin films by ellipsometry,” Thin Solid Films482(1-2), 126–132 (2005).
[CrossRef]

McDaniel, T. W.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE96(11), 1810–1835 (2008).
[CrossRef]

Muraoka, H.

T. Suzuki, H. Muraoka, Y. Nakamura, and K. Ouchi, “Design and recording properties of FePt perpendicular media,” IEEE Trans. Magn.39(2), 691–696 (2003).
[CrossRef]

Nakamura, Y.

T. Suzuki, H. Muraoka, Y. Nakamura, and K. Ouchi, “Design and recording properties of FePt perpendicular media,” IEEE Trans. Magn.39(2), 691–696 (2003).
[CrossRef]

Ouchi, K.

T. Suzuki, H. Muraoka, Y. Nakamura, and K. Ouchi, “Design and recording properties of FePt perpendicular media,” IEEE Trans. Magn.39(2), 691–696 (2003).
[CrossRef]

Peng, Y. G.

K. F. Dong, H. H. Li, Y. G. Peng, G. Ju, G. M. Chow, and J. S. Chen, “Well-isolated L10 FePt-SiNx-C nanocomposite films with large coercivity and small grain size,” J. Appl. Phys.111(7), 07A308 (2012).
[CrossRef]

Poelsema, B.

E. S. Kooij, H. Wormeester, E. A. M. Brouwer, E. van Vroonhoven, A. van Silfhout, and B. Poelsema, “Optical characterization of thin colloidal gold films by spectroscopic ellipsometry,” Langmuir18(11), 4401–4413 (2002).
[CrossRef]

Pribil, G. K.

G. K. Pribil, B. Johs, and N. J. Ianno, “Dielectric function of thin metal films by combined in situ transmission ellipsometry and intensity measurements,” Thin Solid Films455–456, 443–449 (2004).
[CrossRef]

Rottmayer, R. E.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE96(11), 1810–1835 (2008).
[CrossRef]

Song, T.

T. Song, T. J. Zhou, C. L. Chen, and H. Gong, “XPS study of thermal effects on FePt and FePtAg nanoparticles,” IEEE Trans. Magn.41(10), 3367–3369 (2005).
[CrossRef]

Sun, C. Q.

C. Q. Sun, “Size dependence of nanostructures: Impact of bond order deficiency,” Prog. Solid State Chem.35(1), 1–159 (2007).
[CrossRef]

Suzuki, T.

T. Suzuki, H. Muraoka, Y. Nakamura, and K. Ouchi, “Design and recording properties of FePt perpendicular media,” IEEE Trans. Magn.39(2), 691–696 (2003).
[CrossRef]

Toh, Y. T.

B. X. Xu, Z. H. Cen, Y. T. Toh, J. M. Li, K. D. Ye, and J. Zhang, “Efficiency analysis of near field optical transducer used in heat-assisted magnetic recording,” IEEE Trans. Magn. (to be published).

van Silfhout, A.

E. S. Kooij, H. Wormeester, E. A. M. Brouwer, E. van Vroonhoven, A. van Silfhout, and B. Poelsema, “Optical characterization of thin colloidal gold films by spectroscopic ellipsometry,” Langmuir18(11), 4401–4413 (2002).
[CrossRef]

van Vroonhoven, E.

E. S. Kooij, H. Wormeester, E. A. M. Brouwer, E. van Vroonhoven, A. van Silfhout, and B. Poelsema, “Optical characterization of thin colloidal gold films by spectroscopic ellipsometry,” Langmuir18(11), 4401–4413 (2002).
[CrossRef]

Wormeester, H.

E. S. Kooij, H. Wormeester, E. A. M. Brouwer, E. van Vroonhoven, A. van Silfhout, and B. Poelsema, “Optical characterization of thin colloidal gold films by spectroscopic ellipsometry,” Langmuir18(11), 4401–4413 (2002).
[CrossRef]

Xu, B. X.

B. X. Xu, Z. H. Cen, Y. T. Toh, J. M. Li, K. D. Ye, and J. Zhang, “Efficiency analysis of near field optical transducer used in heat-assisted magnetic recording,” IEEE Trans. Magn. (to be published).

Xu, X. F.

Yang, Y. H.

Y. H. Yang and J. R. Abelson, “Spectroscopic ellipsometry of thin films on transparent substrates: A formalism for data interpretation,” J. Vac. Sci. Technol. A13(3), 1145–1149 (1995).
[CrossRef]

Ye, K. D.

B. X. Xu, Z. H. Cen, Y. T. Toh, J. M. Li, K. D. Ye, and J. Zhang, “Efficiency analysis of near field optical transducer used in heat-assisted magnetic recording,” IEEE Trans. Magn. (to be published).

Yu, A. C. C.

S. L. Lee, C. C. H. Lo, A. C. C. Yu, and M. Fan, “Spectroscopic ellipsometry study of FePt nanoparticle films,” Phys. Status Solidi203(15), 3801–3804 (2006) (a).
[CrossRef]

S. J. Lee, A. C. C. Yu, C. C. H. Lo, and M. Fan, “Optical properties of monodispersive FePt nanoparticle films,” Phys. Status Solidi201(13), 3031–3036 (2004) (a).
[CrossRef]

Zhang, J.

B. X. Xu, Z. H. Cen, Y. T. Toh, J. M. Li, K. D. Ye, and J. Zhang, “Efficiency analysis of near field optical transducer used in heat-assisted magnetic recording,” IEEE Trans. Magn. (to be published).

Zhou, N.

Zhou, T. J.

T. Song, T. J. Zhou, C. L. Chen, and H. Gong, “XPS study of thermal effects on FePt and FePtAg nanoparticles,” IEEE Trans. Magn.41(10), 3367–3369 (2005).
[CrossRef]

Ann. Phys. (Leipzig) (1)

D. A. G. Bruggeman, “Calculation of various physics constants in heterogenous substances I. Dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. (Leipzig)24(7), 636–664 (1935).

Appl. Opt. (1)

Appl. Phys. B (1)

B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B39(3), 165–170 (1986).
[CrossRef]

IEEE Trans. Magn. (4)

T. Suzuki, H. Muraoka, Y. Nakamura, and K. Ouchi, “Design and recording properties of FePt perpendicular media,” IEEE Trans. Magn.39(2), 691–696 (2003).
[CrossRef]

J. S. Chen, J. F. Hu, B. C. Lim, Y. F. Ding, G. M. Chow, and G. Ju, “Development of L10 FePt:C (001) thin films with high coercivity and small grain size for ultra-high-density magnetic recording media,” IEEE Trans. Magn.45(2), 839–844 (2009).
[CrossRef]

T. Song, T. J. Zhou, C. L. Chen, and H. Gong, “XPS study of thermal effects on FePt and FePtAg nanoparticles,” IEEE Trans. Magn.41(10), 3367–3369 (2005).
[CrossRef]

B. X. Xu, Z. H. Cen, Y. T. Toh, J. M. Li, K. D. Ye, and J. Zhang, “Efficiency analysis of near field optical transducer used in heat-assisted magnetic recording,” IEEE Trans. Magn. (to be published).

J. Appl. Phys. (2)

K. F. Dong, H. H. Li, Y. G. Peng, G. Ju, G. M. Chow, and J. S. Chen, “Well-isolated L10 FePt-SiNx-C nanocomposite films with large coercivity and small grain size,” J. Appl. Phys.111(7), 07A308 (2012).
[CrossRef]

J. S. Chen, B. C. Lim, Y. F. Ding, J. F. Hu, G. M. Chow, and G. Ju, “Granular L10 FePt-X (X=C, TiO2, Ta2O5) (001) nanocomposite films with small grain size for high density magnetic recording,” J. Appl. Phys.105(7), 07B702 (2009).
[CrossRef]

J. Magn. Magn. Mater. (2)

S. D. Granz and M. H. Kryder, “Granular L10 FePt (001) thin films for Heat Assisted Magnetic Recording,” J. Magn. Magn. Mater.324(3), 287–294 (2012).
[CrossRef]

J. F. Hu, J. S. Chen, B. C. Lim, and B. Liu, “Underlayer diffusion-induced enhancement of coercivity in high anisotropy FePt thin films,” J. Magn. Magn. Mater.320(22), 3068–3070 (2008).
[CrossRef]

J. Vac. Sci. Technol. A (1)

Y. H. Yang and J. R. Abelson, “Spectroscopic ellipsometry of thin films on transparent substrates: A formalism for data interpretation,” J. Vac. Sci. Technol. A13(3), 1145–1149 (1995).
[CrossRef]

Langmuir (1)

E. S. Kooij, H. Wormeester, E. A. M. Brouwer, E. van Vroonhoven, A. van Silfhout, and B. Poelsema, “Optical characterization of thin colloidal gold films by spectroscopic ellipsometry,” Langmuir18(11), 4401–4413 (2002).
[CrossRef]

Phys. Status Solidi (2)

S. J. Lee, A. C. C. Yu, C. C. H. Lo, and M. Fan, “Optical properties of monodispersive FePt nanoparticle films,” Phys. Status Solidi201(13), 3031–3036 (2004) (a).
[CrossRef]

S. L. Lee, C. C. H. Lo, A. C. C. Yu, and M. Fan, “Spectroscopic ellipsometry study of FePt nanoparticle films,” Phys. Status Solidi203(15), 3801–3804 (2006) (a).
[CrossRef]

Proc. IEEE (1)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE96(11), 1810–1835 (2008).
[CrossRef]

Prog. Solid State Chem. (1)

C. Q. Sun, “Size dependence of nanostructures: Impact of bond order deficiency,” Prog. Solid State Chem.35(1), 1–159 (2007).
[CrossRef]

Thin Solid Films (2)

S. Logothetidis, M. Gioti, S. Lousinian, and S. Fotiadou, “Haemocompatibility studies on carbon-based thin films by ellipsometry,” Thin Solid Films482(1-2), 126–132 (2005).
[CrossRef]

G. K. Pribil, B. Johs, and N. J. Ianno, “Dielectric function of thin metal films by combined in situ transmission ellipsometry and intensity measurements,” Thin Solid Films455–456, 443–449 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A schematic of the FePt-C sample layer structure. (b) Cross-sectional TEM image of the FePt-C thin film.

Fig. 2
Fig. 2

(a) SE and (b) transmission spectral fittings for FePt-C and FePt thin films.

Fig. 3
Fig. 3

(a) Refractive index and (b) extinction coefficient of FePt-C and FePt thin films as functions of wavelength. Smoothing optical functions using polynomial fitting is given also.

Fig. 4
Fig. 4

(a) Simulation model of HAMR system. (b) Structure of C-aperture transducer.

Fig. 5
Fig. 5

(a) Electric field intensity distribution on the recording layer top surface in FePt-C and FePt cases. (b) Electric field intensity distribution in recording layer.

Fig. 6
Fig. 6

Contributions of different electric filed components to transducer efficiency. All absorbed power portions are normalized to the transducer efficiency in the FePt-C case.

Tables (1)

Tables Icon

Table 1 Optical constants (at 780 nm) of materials used in FDTD simulation

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

tan(Ψ) e iΔ = r p r s ,
MS E T = 1 N i=1 N ( T i cal T i exp δ T i exp ) 2 ,
E x,y recordinglayer = E x,y air
E z recordinglayer E z air = 1 | n+ik | 2 ,
A=0.5real( iωE·D )=0.5ω | E | 2 imag( ε ),
A x,y | E x,y recordinglayer | 2 nk | E x,y air | 2 nk
A z | E z recordinglayer | 2 nk | E z air | 2 nk | n+ik | 4 .

Metrics