Abstract

We propose and experimentally demonstrate a cost-effective radio-over-fiber (RoF) system to simultaneously generate and transmit multiband and multi-gigabit 60-GHz millimeter wave (MMW) signals using frequency quintupling technique. Multiband signals at 56-GHz and 60-GHz are realized with two cascaded single-drive Mach-Zehnder modulators (MZMs), where phase control is not required. Furthermore, only low-frequency (≤12GHz) optical and electrical devices are used in the central station (CS), which enable a cost-effective system. At the user-terminal, two-stage down-conversions are employed by envelope detection (ED) and intermediate frequency (IF) mixing, eliminating expensive high-speed synthesizer and critical phase control components. Error-free performances are achieved for the multiband MMW signals after 50-km single-mode fiber (SMF) and 10-ft wireless link transmissions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “Simultaneous generation and transmission of 60-GHz wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett.22(15), 1099–1101 (2010).
    [CrossRef]
  2. Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol.25(11), 3452–3471 (2007).
    [CrossRef]
  3. A. Chowdhury, J. Yu, H. Chien, M. Huang, T. Wang, and G. K. Chang, “Spectrally efficient simultaneous delivery of 112Gbps baseband wireline and 60 GHz MM-Wave carrying 10Gbps optical wireless signal in radio-over-fiber WDM-PON access systems,” in Proceeding of ECOC2007, 4.5.1.
  4. H. C. Chien, A. Chowdhury, Y. T. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, “A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques,” in Proceeding of OFC2009, OTuB7.
  5. A. Stöhr, A. Akrout, R. Buß, B. Charbonnier, F. Dijk, A. Enard, S. Fedderwitz, D. Jäger, M. Huchard, F. Lecoche, J. Marti, R. Sambaraju, A. Steffan, A. Umbach, and M. Weiß, “60 GHz radio-over-fiber technologies for broadband wireless services,” J. Opt. Netw.8(5), 471–487 (2009).
    [CrossRef]
  6. L. Zhang, X. Hu, P. Cao, and Y. Su, “A 60-GHz RoF system in WDM-PON with reduced number of modulators and low-cost electronics,” in Proceeding of PGC2010, conf10a420.
  7. IEEE 802.15.3cWorking Group Homepage. [Online]. Available: http://www.ieee802.org/15/pub/TG3c.html
  8. G. Anastasi, E. Borgia, M. Conti, and E. Gregori, “IEEE 802.11 Ad Hoc Networks: Performance Measurements,” in Proceedings of the Workshop on Mobile and Wireless Networks (MWN 2003), May 19, 2003.
  9. H. D. Wireless, \texttrademark 1.0 Specification. [Online]. Available: http://www.wirelesshd.org/
  10. High Rate 60 GHz PHY, MAC and HDMI PAL, Standard ECMA-387, Dec. 2008, under ballot in JTC 1 as ISO/IEC DIS 13156.
  11. Z. Jia, Y.-T. Hsueh, A. Chowdhury, H.-C. Chien, J. A. Buck, and G.-K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett.20(17), 1470–1472 (2008).
    [CrossRef]
  12. Y. T. Hsueh, Z. Jia, J. Yu, S. H. Fan, and G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett.21(18), 1338–1340 (2009).
    [CrossRef]
  13. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network,” IEEE Photon. Technol. Lett.18(21), 2311–2313 (2006).
    [CrossRef]
  14. K. Ikeda, T. Kuri, and K. Kitayama, “Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength,” J. Lightwave Technol.21(12), 3194–3202 (2003).
    [CrossRef]
  15. A. Chowdhury, H. C. Chien, and G. K. Chang, “Demonstration of simultaneous all-optical up-conversion of gigabit wireless services at 60-GHz and 64-GHz in converged optical wireless system carried by single wavelength lightwave,” in Proceeding of OFC2010, OWQ5.
  16. L. Zhang, S. H. Fan, C. Liu, M. Zhu, X. Hu, Z. Li, Y. Su, and G. K. Chang, “A cost-effective multi-gigabit 60-GHz wireless over optical fiber access system based on a novel frequency quintupling technique,” in Proceeding of Photonics Society Summer Topical Meeting Series2012, WB1.2.
  17. J. Liu, L. Zhang, S. H. Fan, C. Guo, S. He, and G. K. Chang, “A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks,” Prog. Electromag. Res.126, 139–148 (2012).
    [CrossRef]

2012 (1)

J. Liu, L. Zhang, S. H. Fan, C. Guo, S. He, and G. K. Chang, “A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks,” Prog. Electromag. Res.126, 139–148 (2012).
[CrossRef]

2010 (1)

W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “Simultaneous generation and transmission of 60-GHz wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett.22(15), 1099–1101 (2010).
[CrossRef]

2009 (2)

Y. T. Hsueh, Z. Jia, J. Yu, S. H. Fan, and G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett.21(18), 1338–1340 (2009).
[CrossRef]

A. Stöhr, A. Akrout, R. Buß, B. Charbonnier, F. Dijk, A. Enard, S. Fedderwitz, D. Jäger, M. Huchard, F. Lecoche, J. Marti, R. Sambaraju, A. Steffan, A. Umbach, and M. Weiß, “60 GHz radio-over-fiber technologies for broadband wireless services,” J. Opt. Netw.8(5), 471–487 (2009).
[CrossRef]

2008 (1)

Z. Jia, Y.-T. Hsueh, A. Chowdhury, H.-C. Chien, J. A. Buck, and G.-K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett.20(17), 1470–1472 (2008).
[CrossRef]

2007 (1)

2006 (1)

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network,” IEEE Photon. Technol. Lett.18(21), 2311–2313 (2006).
[CrossRef]

2003 (1)

Akrout, A.

Bakaul, M.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network,” IEEE Photon. Technol. Lett.18(21), 2311–2313 (2006).
[CrossRef]

Buck, J. A.

Z. Jia, Y.-T. Hsueh, A. Chowdhury, H.-C. Chien, J. A. Buck, and G.-K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett.20(17), 1470–1472 (2008).
[CrossRef]

Buß, R.

Chang, G. K.

J. Liu, L. Zhang, S. H. Fan, C. Guo, S. He, and G. K. Chang, “A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks,” Prog. Electromag. Res.126, 139–148 (2012).
[CrossRef]

Y. T. Hsueh, Z. Jia, J. Yu, S. H. Fan, and G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett.21(18), 1338–1340 (2009).
[CrossRef]

Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol.25(11), 3452–3471 (2007).
[CrossRef]

Chang, G.-K.

Z. Jia, Y.-T. Hsueh, A. Chowdhury, H.-C. Chien, J. A. Buck, and G.-K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett.20(17), 1470–1472 (2008).
[CrossRef]

Charbonnier, B.

Chen, J.

W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “Simultaneous generation and transmission of 60-GHz wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett.22(15), 1099–1101 (2010).
[CrossRef]

Chi, S.

W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “Simultaneous generation and transmission of 60-GHz wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett.22(15), 1099–1101 (2010).
[CrossRef]

Chien, H.-C.

Z. Jia, Y.-T. Hsueh, A. Chowdhury, H.-C. Chien, J. A. Buck, and G.-K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett.20(17), 1470–1472 (2008).
[CrossRef]

Chowdhury, A.

Z. Jia, Y.-T. Hsueh, A. Chowdhury, H.-C. Chien, J. A. Buck, and G.-K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett.20(17), 1470–1472 (2008).
[CrossRef]

Dijk, F.

Ellinas, G.

Enard, A.

Fan, S. H.

J. Liu, L. Zhang, S. H. Fan, C. Guo, S. He, and G. K. Chang, “A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks,” Prog. Electromag. Res.126, 139–148 (2012).
[CrossRef]

Y. T. Hsueh, Z. Jia, J. Yu, S. H. Fan, and G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett.21(18), 1338–1340 (2009).
[CrossRef]

Fedderwitz, S.

Guo, C.

J. Liu, L. Zhang, S. H. Fan, C. Guo, S. He, and G. K. Chang, “A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks,” Prog. Electromag. Res.126, 139–148 (2012).
[CrossRef]

He, S.

J. Liu, L. Zhang, S. H. Fan, C. Guo, S. He, and G. K. Chang, “A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks,” Prog. Electromag. Res.126, 139–148 (2012).
[CrossRef]

Hsueh, Y. T.

Y. T. Hsueh, Z. Jia, J. Yu, S. H. Fan, and G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett.21(18), 1338–1340 (2009).
[CrossRef]

Hsueh, Y.-T.

Z. Jia, Y.-T. Hsueh, A. Chowdhury, H.-C. Chien, J. A. Buck, and G.-K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett.20(17), 1470–1472 (2008).
[CrossRef]

Huchard, M.

Ikeda, K.

Jäger, D.

Jia, Z.

Y. T. Hsueh, Z. Jia, J. Yu, S. H. Fan, and G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett.21(18), 1338–1340 (2009).
[CrossRef]

Z. Jia, Y.-T. Hsueh, A. Chowdhury, H.-C. Chien, J. A. Buck, and G.-K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett.20(17), 1470–1472 (2008).
[CrossRef]

Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol.25(11), 3452–3471 (2007).
[CrossRef]

Jiang, W.-J.

W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “Simultaneous generation and transmission of 60-GHz wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett.22(15), 1099–1101 (2010).
[CrossRef]

Kitayama, K.

Kuri, T.

Lecoche, F.

Lim, C.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network,” IEEE Photon. Technol. Lett.18(21), 2311–2313 (2006).
[CrossRef]

Lin, C.-T.

W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “Simultaneous generation and transmission of 60-GHz wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett.22(15), 1099–1101 (2010).
[CrossRef]

Liu, J.

J. Liu, L. Zhang, S. H. Fan, C. Guo, S. He, and G. K. Chang, “A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks,” Prog. Electromag. Res.126, 139–148 (2012).
[CrossRef]

Marti, J.

Nirmalathas, A.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network,” IEEE Photon. Technol. Lett.18(21), 2311–2313 (2006).
[CrossRef]

Novak, D.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network,” IEEE Photon. Technol. Lett.18(21), 2311–2313 (2006).
[CrossRef]

Sambaraju, R.

Shih, P.-T.

W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “Simultaneous generation and transmission of 60-GHz wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett.22(15), 1099–1101 (2010).
[CrossRef]

Steffan, A.

Stöhr, A.

Umbach, A.

Wang He, L.-Y.

W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “Simultaneous generation and transmission of 60-GHz wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett.22(15), 1099–1101 (2010).
[CrossRef]

Waterhouse, R.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network,” IEEE Photon. Technol. Lett.18(21), 2311–2313 (2006).
[CrossRef]

Weiß, M.

Yu, J.

Y. T. Hsueh, Z. Jia, J. Yu, S. H. Fan, and G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett.21(18), 1338–1340 (2009).
[CrossRef]

Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol.25(11), 3452–3471 (2007).
[CrossRef]

Zhang, L.

J. Liu, L. Zhang, S. H. Fan, C. Guo, S. He, and G. K. Chang, “A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks,” Prog. Electromag. Res.126, 139–148 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Z. Jia, Y.-T. Hsueh, A. Chowdhury, H.-C. Chien, J. A. Buck, and G.-K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett.20(17), 1470–1472 (2008).
[CrossRef]

Y. T. Hsueh, Z. Jia, J. Yu, S. H. Fan, and G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett.21(18), 1338–1340 (2009).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network,” IEEE Photon. Technol. Lett.18(21), 2311–2313 (2006).
[CrossRef]

W.-J. Jiang, C.-T. Lin, P.-T. Shih, L.-Y. Wang He, J. Chen, and S. Chi, “Simultaneous generation and transmission of 60-GHz wireless and baseband wireline signals with uplink transmission using an RSOA,” IEEE Photon. Technol. Lett.22(15), 1099–1101 (2010).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Netw. (1)

Prog. Electromag. Res. (1)

J. Liu, L. Zhang, S. H. Fan, C. Guo, S. He, and G. K. Chang, “A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks,” Prog. Electromag. Res.126, 139–148 (2012).
[CrossRef]

Other (9)

L. Zhang, X. Hu, P. Cao, and Y. Su, “A 60-GHz RoF system in WDM-PON with reduced number of modulators and low-cost electronics,” in Proceeding of PGC2010, conf10a420.

IEEE 802.15.3cWorking Group Homepage. [Online]. Available: http://www.ieee802.org/15/pub/TG3c.html

G. Anastasi, E. Borgia, M. Conti, and E. Gregori, “IEEE 802.11 Ad Hoc Networks: Performance Measurements,” in Proceedings of the Workshop on Mobile and Wireless Networks (MWN 2003), May 19, 2003.

H. D. Wireless, \texttrademark 1.0 Specification. [Online]. Available: http://www.wirelesshd.org/

High Rate 60 GHz PHY, MAC and HDMI PAL, Standard ECMA-387, Dec. 2008, under ballot in JTC 1 as ISO/IEC DIS 13156.

A. Chowdhury, J. Yu, H. Chien, M. Huang, T. Wang, and G. K. Chang, “Spectrally efficient simultaneous delivery of 112Gbps baseband wireline and 60 GHz MM-Wave carrying 10Gbps optical wireless signal in radio-over-fiber WDM-PON access systems,” in Proceeding of ECOC2007, 4.5.1.

H. C. Chien, A. Chowdhury, Y. T. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, “A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques,” in Proceeding of OFC2009, OTuB7.

A. Chowdhury, H. C. Chien, and G. K. Chang, “Demonstration of simultaneous all-optical up-conversion of gigabit wireless services at 60-GHz and 64-GHz in converged optical wireless system carried by single wavelength lightwave,” in Proceeding of OFC2010, OWQ5.

L. Zhang, S. H. Fan, C. Liu, M. Zhu, X. Hu, Z. Li, Y. Su, and G. K. Chang, “A cost-effective multi-gigabit 60-GHz wireless over optical fiber access system based on a novel frequency quintupling technique,” in Proceeding of Photonics Society Summer Topical Meeting Series2012, WB1.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of multiband MMW-signal generation based on frequency quintupling technique.

Fig. 2
Fig. 2

Experimental setup of the proposed 60-GHz multiband RoF system, (a)-(d) correspond to the optical spectra shown in Fig. 3.

Fig. 3
Fig. 3

Optical spectra taken at different positions as indicated in Fig. 2. Spectral resolution: 0.02 nm. (a) Multiband optical SCM signal (green line) and the pass-band of the optical filter (purple line), (b) generated SSB signal after the filter, (c) output of MZM-2 (green line) and the pass-band of the 33/66 IL (purple line), and (d) output of the 33/66 IL.

Fig. 4
Fig. 4

(a) Electrical spectrum after the PD detection, (b) IF band and (d) baseband eye diagrams for the 56-GHz signal, (c) IF band and (e) baseband eye diagrams for the 60-GHz signal.

Fig. 5
Fig. 5

(a) BER curves of the 60-GHz signal with and without the presence of the 56-GHz signal, baseband eye diagrams for the 60-GHz signal (b) with the presence of the 56-GHz signal, and (c) without the presence of the 56-GHz signal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E out1 = E 0 cos( ω c t)+ D 1 (t)cos[( ω c + ω RF1 )t]+ D 2 (t)cos[( ω c + ω RF2 )t]
E out2 = E 0 cos[( ω c 2 ω RF1 )t]+ E 0 cos[( ω c +2 ω RF1 )t] + D 1 (t)cos[( ω c +3 ω RF1 )t]+ D 2 (t)cos[( ω c +2 ω RF1 + ω RF2 )t]
E out3 =μ E 0 2 cos(4 ω RF1 t)+μ D 1 (t) E 0 cos(5 ω RF1 t)+μ D 2 (t) E 0 cos[(4 ω RF1 + ω RF2 )t]
E out4 =μ' | E out3 | 2 = 1 2 μ' μ 2 E 0 4 + 1 2 μ' μ 2 D 1 (t) 2 E 0 2 + 1 2 μ' μ 2 D 2 (t) 2 E 0 2 +μ' μ 2 E 0 3 cos( ω RF1 t)+μ' μ 2 E 0 3 cos( ω RF2 t) +μ' μ 2 E 0 2 cos[( ω RF1 ω RF2 )t]

Metrics