Abstract

Photons which are generated in a two-photon cascade process have an underlying time correlation since the spontaneous emission of the upper level populates the intermediate state. This correlation leads to a reduction of the purity of the photon emitted from the intermediate state. Here we characterize this time correlation for the biexciton-exciton cascade of an InAs/GaAs quantum dot. We show that the correlation can be reduced by tuning the biexciton transition in resonance to a planar distributed Bragg reflector cavity. The enhanced and inhibited emission into the cavity accelerates the biexciton emission and slows down the exciton emission thus reduces the correlation and increases the purity of the exciton photon. This is essential for schemes like creating time-bin entangled photon pairs from quantum dot systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000).
    [CrossRef] [PubMed]
  2. E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
    [CrossRef] [PubMed]
  3. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
    [CrossRef]
  4. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  5. D. F. Walls and G. J. MilburnQuantum Optics (Springer, 1994).
  6. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett.84, 2513–2516 (2000).
    [CrossRef] [PubMed]
  7. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto “Triggered single photons from a quantum dot,” Phys. Rev. Lett.86, 1502–1505 (2001).
    [CrossRef] [PubMed]
  8. J. Sabarinathan, P. Bhattacharya, P.-C. Yu, S. Krishna, J. Cheng, and D. G. Steel “An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode,” Appl. Phys. Lett.81, 3876–3878 (2002).
    [CrossRef]
  9. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000).
    [CrossRef] [PubMed]
  10. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett.96, 130501 (2006).
    [CrossRef] [PubMed]
  11. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010).
    [CrossRef] [PubMed]
  12. A. Muller, W. Fang, J. Lawall, and G. S. Solomon “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103, 217402 (2009).
    [CrossRef]
  13. R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields “Improved fidelity of triggered entangled photons from single quantum dots,” New. J. Phys.8, 29 (2006).
    [CrossRef]
  14. J. E. Avron, G. Bisker, D. Gershoni, N. H. Lindner, and E. A. Meirom “Entanglement on demand through time reordering,” Phys. Rev. Lett.100, 120501 (2008).
    [CrossRef]
  15. N. Gisin, R. Passy, J. Bishoff, and B. Perny “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett.5, 819–821 (1993).
    [CrossRef]
  16. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin “Violation of Bell inequalities by photons more than 10 Km apart,” Phys. Rev. Lett.81, 3563–3566 (1998).
    [CrossRef]
  17. D. Stucki, H. Zbinden, and N. Gisin “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt.52, 2637–2648 (2005).
    [CrossRef]
  18. C. Simon and J.-P. Poizat “Creating single time-bin-entangled photon pairs,” Phys. Rev. Lett.94, 030502 (2005).
    [CrossRef] [PubMed]
  19. P. K. Pathak and S. Hughes “Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage,” Phys. Rev. B83, 245301 (2011).
    [CrossRef]
  20. G. JaegerQuantum Information (Springer, 2007).
  21. B. Ohnesorge, M. Bayer, A. Forchel, J. P. Reithmaier, N. A. Gippius, and S. G. Tikhodeev “Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities,” Phys. Rev. B56, R4367–R4370 (1997).
    [CrossRef]
  22. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
    [CrossRef] [PubMed]
  23. G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T. L. Reinecke, B. D. Gerardot, and P. M. Petroff “Emission characteristics of quantum dots in planar microcavities,” Phys. Rev. B73, 205330 (2006).
    [CrossRef]
  24. C. de Mello Donega, M. Bode, and A. Meijerink “Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B74, 085320 (2006).
    [CrossRef]
  25. J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, and R. Leon “Temperature independent lifetime in InAlAs quantum dots,” J. Vac. Sci. Technol. B16, 578–581 (1998).
    [CrossRef]
  26. E. M. Purcell “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  27. S. Haroche, “Cavity quantum electrodynamics,” Fundamental systems in quantum optics, J. Dalibard, J. M. Raimond, and J. Zinn-Justin (eds.), Les Houches summer school, Session LIII, p.767 (North-Holland, Amsterdam, 1992).
  28. J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81, 1110 (1998).
    [CrossRef]
  29. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett.86, 3168 (2000).
    [CrossRef]
  30. D. Englund, I. Fushman, A. Faraon, and J. Vuckovic, “Quantum dots in photonic crystals: From quantum information processing to single photon nonlinear optics,” Photonic. Nanostruct.7, 56–62 (2009).
    [CrossRef]
  31. H. Jayakumar, A. Predojevic, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett.110, 135505 (2013).
    [CrossRef]
  32. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett.82, 2594–2597 (1999).
    [CrossRef]
  33. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
    [CrossRef] [PubMed]
  34. W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59, 169–181 (1999).
    [CrossRef]

2013

H. Jayakumar, A. Predojevic, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett.110, 135505 (2013).
[CrossRef]

2011

P. K. Pathak and S. Hughes “Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage,” Phys. Rev. B83, 245301 (2011).
[CrossRef]

2010

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010).
[CrossRef] [PubMed]

2009

A. Muller, W. Fang, J. Lawall, and G. S. Solomon “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103, 217402 (2009).
[CrossRef]

D. Englund, I. Fushman, A. Faraon, and J. Vuckovic, “Quantum dots in photonic crystals: From quantum information processing to single photon nonlinear optics,” Photonic. Nanostruct.7, 56–62 (2009).
[CrossRef]

2008

J. E. Avron, G. Bisker, D. Gershoni, N. H. Lindner, and E. A. Meirom “Entanglement on demand through time reordering,” Phys. Rev. Lett.100, 120501 (2008).
[CrossRef]

2006

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields “Improved fidelity of triggered entangled photons from single quantum dots,” New. J. Phys.8, 29 (2006).
[CrossRef]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett.96, 130501 (2006).
[CrossRef] [PubMed]

G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T. L. Reinecke, B. D. Gerardot, and P. M. Petroff “Emission characteristics of quantum dots in planar microcavities,” Phys. Rev. B73, 205330 (2006).
[CrossRef]

C. de Mello Donega, M. Bode, and A. Meijerink “Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B74, 085320 (2006).
[CrossRef]

2005

D. Stucki, H. Zbinden, and N. Gisin “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt.52, 2637–2648 (2005).
[CrossRef]

C. Simon and J.-P. Poizat “Creating single time-bin-entangled photon pairs,” Phys. Rev. Lett.94, 030502 (2005).
[CrossRef] [PubMed]

2004

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

2002

J. Sabarinathan, P. Bhattacharya, P.-C. Yu, S. Krishna, J. Cheng, and D. G. Steel “An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode,” Appl. Phys. Lett.81, 3876–3878 (2002).
[CrossRef]

2001

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto “Triggered single photons from a quantum dot,” Phys. Rev. Lett.86, 1502–1505 (2001).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

2000

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000).
[CrossRef] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett.84, 2513–2516 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000).
[CrossRef] [PubMed]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett.86, 3168 (2000).
[CrossRef]

1999

W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59, 169–181 (1999).
[CrossRef]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett.82, 2594–2597 (1999).
[CrossRef]

1998

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81, 1110 (1998).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin “Violation of Bell inequalities by photons more than 10 Km apart,” Phys. Rev. Lett.81, 3563–3566 (1998).
[CrossRef]

J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, and R. Leon “Temperature independent lifetime in InAlAs quantum dots,” J. Vac. Sci. Technol. B16, 578–581 (1998).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
[CrossRef]

1997

B. Ohnesorge, M. Bayer, A. Forchel, J. P. Reithmaier, N. A. Gippius, and S. G. Tikhodeev “Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities,” Phys. Rev. B56, R4367–R4370 (1997).
[CrossRef]

1996

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

1995

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

1993

N. Gisin, R. Passy, J. Bishoff, and B. Perny “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett.5, 819–821 (1993).
[CrossRef]

1946

E. M. Purcell “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Akopian, N.

G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T. L. Reinecke, B. D. Gerardot, and P. M. Petroff “Emission characteristics of quantum dots in planar microcavities,” Phys. Rev. B73, 205330 (2006).
[CrossRef]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett.96, 130501 (2006).
[CrossRef] [PubMed]

Arlett, J.

J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, and R. Leon “Temperature independent lifetime in InAlAs quantum dots,” J. Vac. Sci. Technol. B16, 578–581 (1998).
[CrossRef]

Atkinson, P.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields “Improved fidelity of triggered entangled photons from single quantum dots,” New. J. Phys.8, 29 (2006).
[CrossRef]

Avron, J.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett.96, 130501 (2006).
[CrossRef] [PubMed]

Avron, J. E.

J. E. Avron, G. Bisker, D. Gershoni, N. H. Lindner, and E. A. Meirom “Entanglement on demand through time reordering,” Phys. Rev. Lett.100, 120501 (2008).
[CrossRef]

Bayer, M.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett.86, 3168 (2000).
[CrossRef]

B. Ohnesorge, M. Bayer, A. Forchel, J. P. Reithmaier, N. A. Gippius, and S. G. Tikhodeev “Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities,” Phys. Rev. B56, R4367–R4370 (1997).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000).
[CrossRef] [PubMed]

Benson, O.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett.84, 2513–2516 (2000).
[CrossRef] [PubMed]

Berlatzky, Y.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett.96, 130501 (2006).
[CrossRef] [PubMed]

Beveratos, A.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010).
[CrossRef] [PubMed]

Bhattacharya, P.

J. Sabarinathan, P. Bhattacharya, P.-C. Yu, S. Krishna, J. Cheng, and D. G. Steel “An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode,” Appl. Phys. Lett.81, 3876–3878 (2002).
[CrossRef]

Bishoff, J.

N. Gisin, R. Passy, J. Bishoff, and B. Perny “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett.5, 819–821 (1993).
[CrossRef]

Bisker, G.

J. E. Avron, G. Bisker, D. Gershoni, N. H. Lindner, and E. A. Meirom “Entanglement on demand through time reordering,” Phys. Rev. Lett.100, 120501 (2008).
[CrossRef]

Bloch, J.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010).
[CrossRef] [PubMed]

Bode, M.

C. de Mello Donega, M. Bode, and A. Meijerink “Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B74, 085320 (2006).
[CrossRef]

Braitbart, S.

G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T. L. Reinecke, B. D. Gerardot, and P. M. Petroff “Emission characteristics of quantum dots in planar microcavities,” Phys. Rev. B73, 205330 (2006).
[CrossRef]

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett.82, 2594–2597 (1999).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin “Violation of Bell inequalities by photons more than 10 Km apart,” Phys. Rev. Lett.81, 3563–3566 (1998).
[CrossRef]

Briegel, H.-J.

W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59, 169–181 (1999).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
[CrossRef]

Charbonneau, S.

J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, and R. Leon “Temperature independent lifetime in InAlAs quantum dots,” J. Vac. Sci. Technol. B16, 578–581 (1998).
[CrossRef]

Cheng, J.

J. Sabarinathan, P. Bhattacharya, P.-C. Yu, S. Krishna, J. Cheng, and D. G. Steel “An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode,” Appl. Phys. Lett.81, 3876–3878 (2002).
[CrossRef]

Cirac, J. I.

W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59, 169–181 (1999).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
[CrossRef]

Cooper, K.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields “Improved fidelity of triggered entangled photons from single quantum dots,” New. J. Phys.8, 29 (2006).
[CrossRef]

Costard, E.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81, 1110 (1998).
[CrossRef]

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto “Triggered single photons from a quantum dot,” Phys. Rev. Lett.86, 1502–1505 (2001).
[CrossRef] [PubMed]

de Mello Donega, C.

C. de Mello Donega, M. Bode, and A. Meijerink “Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B74, 085320 (2006).
[CrossRef]

Deutsch, D.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

Dousse, A.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010).
[CrossRef] [PubMed]

Dür, W.

W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59, 169–181 (1999).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
[CrossRef]

Ekert, A.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

Englund, D.

D. Englund, I. Fushman, A. Faraon, and J. Vuckovic, “Quantum dots in photonic crystals: From quantum information processing to single photon nonlinear optics,” Photonic. Nanostruct.7, 56–62 (2009).
[CrossRef]

Fafard, S.

J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, and R. Leon “Temperature independent lifetime in InAlAs quantum dots,” J. Vac. Sci. Technol. B16, 578–581 (1998).
[CrossRef]

Fang, W.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103, 217402 (2009).
[CrossRef]

Faraon, A.

D. Englund, I. Fushman, A. Faraon, and J. Vuckovic, “Quantum dots in photonic crystals: From quantum information processing to single photon nonlinear optics,” Photonic. Nanostruct.7, 56–62 (2009).
[CrossRef]

Feng, Y.

J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, and R. Leon “Temperature independent lifetime in InAlAs quantum dots,” J. Vac. Sci. Technol. B16, 578–581 (1998).
[CrossRef]

Forchel, A.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett.86, 3168 (2000).
[CrossRef]

B. Ohnesorge, M. Bayer, A. Forchel, J. P. Reithmaier, N. A. Gippius, and S. G. Tikhodeev “Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities,” Phys. Rev. B56, R4367–R4370 (1997).
[CrossRef]

Fushman, I.

D. Englund, I. Fushman, A. Faraon, and J. Vuckovic, “Quantum dots in photonic crystals: From quantum information processing to single photon nonlinear optics,” Photonic. Nanostruct.7, 56–62 (2009).
[CrossRef]

Gayral, B.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81, 1110 (1998).
[CrossRef]

Gerard, J. M.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81, 1110 (1998).
[CrossRef]

Gerardot, B. D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett.96, 130501 (2006).
[CrossRef] [PubMed]

G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T. L. Reinecke, B. D. Gerardot, and P. M. Petroff “Emission characteristics of quantum dots in planar microcavities,” Phys. Rev. B73, 205330 (2006).
[CrossRef]

Gershoni, D.

J. E. Avron, G. Bisker, D. Gershoni, N. H. Lindner, and E. A. Meirom “Entanglement on demand through time reordering,” Phys. Rev. Lett.100, 120501 (2008).
[CrossRef]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett.96, 130501 (2006).
[CrossRef] [PubMed]

G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T. L. Reinecke, B. D. Gerardot, and P. M. Petroff “Emission characteristics of quantum dots in planar microcavities,” Phys. Rev. B73, 205330 (2006).
[CrossRef]

Gippius, N. A.

B. Ohnesorge, M. Bayer, A. Forchel, J. P. Reithmaier, N. A. Gippius, and S. G. Tikhodeev “Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities,” Phys. Rev. B56, R4367–R4370 (1997).
[CrossRef]

Gisin, N.

D. Stucki, H. Zbinden, and N. Gisin “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt.52, 2637–2648 (2005).
[CrossRef]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett.82, 2594–2597 (1999).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin “Violation of Bell inequalities by photons more than 10 Km apart,” Phys. Rev. Lett.81, 3563–3566 (1998).
[CrossRef]

N. Gisin, R. Passy, J. Bishoff, and B. Perny “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett.5, 819–821 (1993).
[CrossRef]

Haroche, S.

S. Haroche, “Cavity quantum electrodynamics,” Fundamental systems in quantum optics, J. Dalibard, J. M. Raimond, and J. Zinn-Justin (eds.), Les Houches summer school, Session LIII, p.767 (North-Holland, Amsterdam, 1992).

Hinzer, K.

J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, and R. Leon “Temperature independent lifetime in InAlAs quantum dots,” J. Vac. Sci. Technol. B16, 578–581 (1998).
[CrossRef]

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000).
[CrossRef] [PubMed]

Huber, T.

H. Jayakumar, A. Predojevic, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett.110, 135505 (2013).
[CrossRef]

Hughes, S.

P. K. Pathak and S. Hughes “Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage,” Phys. Rev. B83, 245301 (2011).
[CrossRef]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000).
[CrossRef] [PubMed]

Jaeger, G.

G. JaegerQuantum Information (Springer, 2007).

Jayakumar, H.

H. Jayakumar, A. Predojevic, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett.110, 135505 (2013).
[CrossRef]

Jennewein, T.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000).
[CrossRef] [PubMed]

Jozsa, R.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

Kauten, T.

H. Jayakumar, A. Predojevic, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett.110, 135505 (2013).
[CrossRef]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000).
[CrossRef] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Krebs, O.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010).
[CrossRef] [PubMed]

Krishna, S.

J. Sabarinathan, P. Bhattacharya, P.-C. Yu, S. Krishna, J. Cheng, and D. G. Steel “An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode,” Appl. Phys. Lett.81, 3876–3878 (2002).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Larionov, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett.86, 3168 (2000).
[CrossRef]

Lawall, J.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103, 217402 (2009).
[CrossRef]

Legrand, B.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81, 1110 (1998).
[CrossRef]

Lemaitre, A.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010).
[CrossRef] [PubMed]

Leon, R.

J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, and R. Leon “Temperature independent lifetime in InAlAs quantum dots,” J. Vac. Sci. Technol. B16, 578–581 (1998).
[CrossRef]

Lindner, N. H.

J. E. Avron, G. Bisker, D. Gershoni, N. H. Lindner, and E. A. Meirom “Entanglement on demand through time reordering,” Phys. Rev. Lett.100, 120501 (2008).
[CrossRef]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett.96, 130501 (2006).
[CrossRef] [PubMed]

Loffler, A.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Macchiavello, C.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

McDonald, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett.86, 3168 (2000).
[CrossRef]

Meijerink, A.

C. de Mello Donega, M. Bode, and A. Meijerink “Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B74, 085320 (2006).
[CrossRef]

Meirom, E. A.

J. E. Avron, G. Bisker, D. Gershoni, N. H. Lindner, and E. A. Meirom “Entanglement on demand through time reordering,” Phys. Rev. Lett.100, 120501 (2008).
[CrossRef]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000).
[CrossRef] [PubMed]

Milburn, G.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Milburn, G. J.

D. F. Walls and G. J. MilburnQuantum Optics (Springer, 1994).

Mizrahi, U.

G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T. L. Reinecke, B. D. Gerardot, and P. M. Petroff “Emission characteristics of quantum dots in planar microcavities,” Phys. Rev. B73, 205330 (2006).
[CrossRef]

Muller, A.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103, 217402 (2009).
[CrossRef]

Ohnesorge, B.

B. Ohnesorge, M. Bayer, A. Forchel, J. P. Reithmaier, N. A. Gippius, and S. G. Tikhodeev “Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities,” Phys. Rev. B56, R4367–R4370 (1997).
[CrossRef]

Passy, R.

N. Gisin, R. Passy, J. Bishoff, and B. Perny “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett.5, 819–821 (1993).
[CrossRef]

Pathak, P. K.

P. K. Pathak and S. Hughes “Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage,” Phys. Rev. B83, 245301 (2011).
[CrossRef]

Pelton, M.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto “Triggered single photons from a quantum dot,” Phys. Rev. Lett.86, 1502–1505 (2001).
[CrossRef] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett.84, 2513–2516 (2000).
[CrossRef] [PubMed]

Perny, B.

N. Gisin, R. Passy, J. Bishoff, and B. Perny “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett.5, 819–821 (1993).
[CrossRef]

Petroff, P. M.

G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T. L. Reinecke, B. D. Gerardot, and P. M. Petroff “Emission characteristics of quantum dots in planar microcavities,” Phys. Rev. B73, 205330 (2006).
[CrossRef]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett.96, 130501 (2006).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000).
[CrossRef] [PubMed]

Poem, E.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett.96, 130501 (2006).
[CrossRef] [PubMed]

Poizat, J.-P.

C. Simon and J.-P. Poizat “Creating single time-bin-entangled photon pairs,” Phys. Rev. Lett.94, 030502 (2005).
[CrossRef] [PubMed]

Popescu, S.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

Predojevic, A.

H. Jayakumar, A. Predojevic, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett.110, 135505 (2013).
[CrossRef]

Purcell, E. M.

E. M. Purcell “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Ramon, G.

G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T. L. Reinecke, B. D. Gerardot, and P. M. Petroff “Emission characteristics of quantum dots in planar microcavities,” Phys. Rev. B73, 205330 (2006).
[CrossRef]

Reinecke, T. L.

G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T. L. Reinecke, B. D. Gerardot, and P. M. Petroff “Emission characteristics of quantum dots in planar microcavities,” Phys. Rev. B73, 205330 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett.86, 3168 (2000).
[CrossRef]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

B. Ohnesorge, M. Bayer, A. Forchel, J. P. Reithmaier, N. A. Gippius, and S. G. Tikhodeev “Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities,” Phys. Rev. B56, R4367–R4370 (1997).
[CrossRef]

Reitzenstein, S.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Ritchie, D. A.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields “Improved fidelity of triggered entangled photons from single quantum dots,” New. J. Phys.8, 29 (2006).
[CrossRef]

Sabarinathan, J.

J. Sabarinathan, P. Bhattacharya, P.-C. Yu, S. Krishna, J. Cheng, and D. G. Steel “An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode,” Appl. Phys. Lett.81, 3876–3878 (2002).
[CrossRef]

Sagnes, I.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010).
[CrossRef] [PubMed]

Sanpera, A.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

Santori, C.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto “Triggered single photons from a quantum dot,” Phys. Rev. Lett.86, 1502–1505 (2001).
[CrossRef] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett.84, 2513–2516 (2000).
[CrossRef] [PubMed]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000).
[CrossRef] [PubMed]

Sek, G.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Senellart, P.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010).
[CrossRef] [PubMed]

Sergienko, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Sermage, B.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81, 1110 (1998).
[CrossRef]

Shields, A. J.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields “Improved fidelity of triggered entangled photons from single quantum dots,” New. J. Phys.8, 29 (2006).
[CrossRef]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Simon, C.

C. Simon and J.-P. Poizat “Creating single time-bin-entangled photon pairs,” Phys. Rev. Lett.94, 030502 (2005).
[CrossRef] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000).
[CrossRef] [PubMed]

Solomon, G.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto “Triggered single photons from a quantum dot,” Phys. Rev. Lett.86, 1502–1505 (2001).
[CrossRef] [PubMed]

Solomon, G. S.

H. Jayakumar, A. Predojevic, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett.110, 135505 (2013).
[CrossRef]

A. Muller, W. Fang, J. Lawall, and G. S. Solomon “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103, 217402 (2009).
[CrossRef]

Steel, D. G.

J. Sabarinathan, P. Bhattacharya, P.-C. Yu, S. Krishna, J. Cheng, and D. G. Steel “An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode,” Appl. Phys. Lett.81, 3876–3878 (2002).
[CrossRef]

Stevenson, R. M.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields “Improved fidelity of triggered entangled photons from single quantum dots,” New. J. Phys.8, 29 (2006).
[CrossRef]

Stucki, D.

D. Stucki, H. Zbinden, and N. Gisin “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt.52, 2637–2648 (2005).
[CrossRef]

Suffczynski, J.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010).
[CrossRef] [PubMed]

Thierry-Mieg, V.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81, 1110 (1998).
[CrossRef]

Tikhodeev, S. G.

B. Ohnesorge, M. Bayer, A. Forchel, J. P. Reithmaier, N. A. Gippius, and S. G. Tikhodeev “Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities,” Phys. Rev. B56, R4367–R4370 (1997).
[CrossRef]

Tittel, W.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett.82, 2594–2597 (1999).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin “Violation of Bell inequalities by photons more than 10 Km apart,” Phys. Rev. Lett.81, 3563–3566 (1998).
[CrossRef]

Voisin, P.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010).
[CrossRef] [PubMed]

Vuckovic, J.

D. Englund, I. Fushman, A. Faraon, and J. Vuckovic, “Quantum dots in photonic crystals: From quantum information processing to single photon nonlinear optics,” Photonic. Nanostruct.7, 56–62 (2009).
[CrossRef]

Walls, D. F.

D. F. Walls and G. J. MilburnQuantum Optics (Springer, 1994).

Weidner, F.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett.86, 3168 (2000).
[CrossRef]

Weihs, G.

H. Jayakumar, A. Predojevic, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett.110, 135505 (2013).
[CrossRef]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000).
[CrossRef] [PubMed]

Weinfurter, H.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Yamamoto, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto “Triggered single photons from a quantum dot,” Phys. Rev. Lett.86, 1502–1505 (2001).
[CrossRef] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett.84, 2513–2516 (2000).
[CrossRef] [PubMed]

Yang, F.

J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, and R. Leon “Temperature independent lifetime in InAlAs quantum dots,” J. Vac. Sci. Technol. B16, 578–581 (1998).
[CrossRef]

Young, R. J.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields “Improved fidelity of triggered entangled photons from single quantum dots,” New. J. Phys.8, 29 (2006).
[CrossRef]

Yu, P.-C.

J. Sabarinathan, P. Bhattacharya, P.-C. Yu, S. Krishna, J. Cheng, and D. G. Steel “An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode,” Appl. Phys. Lett.81, 3876–3878 (2002).
[CrossRef]

Zbinden, H.

D. Stucki, H. Zbinden, and N. Gisin “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt.52, 2637–2648 (2005).
[CrossRef]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett.82, 2594–2597 (1999).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin “Violation of Bell inequalities by photons more than 10 Km apart,” Phys. Rev. Lett.81, 3563–3566 (1998).
[CrossRef]

Zeilinger, A.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000).
[CrossRef] [PubMed]

Zoller, P.

W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59, 169–181 (1999).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
[CrossRef]

Appl. Phys. Lett.

J. Sabarinathan, P. Bhattacharya, P.-C. Yu, S. Krishna, J. Cheng, and D. G. Steel “An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode,” Appl. Phys. Lett.81, 3876–3878 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Gisin, R. Passy, J. Bishoff, and B. Perny “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett.5, 819–821 (1993).
[CrossRef]

J. Mod. Opt.

D. Stucki, H. Zbinden, and N. Gisin “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt.52, 2637–2648 (2005).
[CrossRef]

J. Vac. Sci. Technol. B

J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, and R. Leon “Temperature independent lifetime in InAlAs quantum dots,” J. Vac. Sci. Technol. B16, 578–581 (1998).
[CrossRef]

Nature

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

New. J. Phys.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields “Improved fidelity of triggered entangled photons from single quantum dots,” New. J. Phys.8, 29 (2006).
[CrossRef]

Photonic. Nanostruct.

D. Englund, I. Fushman, A. Faraon, and J. Vuckovic, “Quantum dots in photonic crystals: From quantum information processing to single photon nonlinear optics,” Photonic. Nanostruct.7, 56–62 (2009).
[CrossRef]

Phys. Rev.

E. M. Purcell “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Phys. Rev. A

W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59, 169–181 (1999).
[CrossRef]

Phys. Rev. B

B. Ohnesorge, M. Bayer, A. Forchel, J. P. Reithmaier, N. A. Gippius, and S. G. Tikhodeev “Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities,” Phys. Rev. B56, R4367–R4370 (1997).
[CrossRef]

G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T. L. Reinecke, B. D. Gerardot, and P. M. Petroff “Emission characteristics of quantum dots in planar microcavities,” Phys. Rev. B73, 205330 (2006).
[CrossRef]

C. de Mello Donega, M. Bode, and A. Meijerink “Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B74, 085320 (2006).
[CrossRef]

P. K. Pathak and S. Hughes “Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage,” Phys. Rev. B83, 245301 (2011).
[CrossRef]

Phys. Rev. Lett.

C. Simon and J.-P. Poizat “Creating single time-bin-entangled photon pairs,” Phys. Rev. Lett.94, 030502 (2005).
[CrossRef] [PubMed]

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81, 1110 (1998).
[CrossRef]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett.86, 3168 (2000).
[CrossRef]

H. Jayakumar, A. Predojevic, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett.110, 135505 (2013).
[CrossRef]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett.82, 2594–2597 (1999).
[CrossRef]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

J. E. Avron, G. Bisker, D. Gershoni, N. H. Lindner, and E. A. Meirom “Entanglement on demand through time reordering,” Phys. Rev. Lett.100, 120501 (2008).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin “Violation of Bell inequalities by photons more than 10 Km apart,” Phys. Rev. Lett.81, 3563–3566 (1998).
[CrossRef]

A. Muller, W. Fang, J. Lawall, and G. S. Solomon “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103, 217402 (2009).
[CrossRef]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000).
[CrossRef] [PubMed]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett.96, 130501 (2006).
[CrossRef] [PubMed]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett.84, 2513–2516 (2000).
[CrossRef] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto “Triggered single photons from a quantum dot,” Phys. Rev. Lett.86, 1502–1505 (2001).
[CrossRef] [PubMed]

Science

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000).
[CrossRef] [PubMed]

Other

D. F. Walls and G. J. MilburnQuantum Optics (Springer, 1994).

G. JaegerQuantum Information (Springer, 2007).

S. Haroche, “Cavity quantum electrodynamics,” Fundamental systems in quantum optics, J. Dalibard, J. M. Raimond, and J. Zinn-Justin (eds.), Les Houches summer school, Session LIII, p.767 (North-Holland, Amsterdam, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Proposed level scheme for time-bin entanglement [18]. The system consists of four states: the initially prepared metastable state |m〉 from where the system is excited to the excited state |b〉 and decays in a cascade over the intermediate state |x〉 to the ground state |g〉, sending out two photons b and x. (b) Experimental Setup. Light derived from a pulsed wavelength tunable Ti:Sapphire laser is used to excite the quantum dot sample from the side using a microfocusser. The emitted photons are collected with an objective. A grating in connection with two collecting single mode fibers serves as a monochromator for the photoluminescence from the quantum dots. The recombination photons from the exciton and biexciton decay are detected with APD1 and APD2, respectively. Photodiode PD1 is used to synchronize incoming laser pulses with the emitted photons.

Fig. 2
Fig. 2

PL spectrum of quantum dots (a) dot2 and (b) dot3 and the cavity reflection white-light measurements for two different temperatures each. The PL measurements were performed with an excitation power density of 125 W/cm2. The quantum dot emission shifts red faster than the cavity emission. When the emission of the quantum dot is in resonance with the cavity emission its intensity gets enhanced and its lifetime gets shortened due to the Purcell effect [26].

Fig. 3
Fig. 3

(a, b) dot3 at 6K, where the biexciton is not resonant to the cavity. (a) shows a 2D-histogram of the exciton and biexciton photon arrival times with respect to the exciting laser pulse. The plotted coincidence counts are placed on the left from the graph diagonal which indicates the time ordering of the detected events. (b) shows the decay of the exciton and biexciton state with an exponential fit. The data was extracted from (a) as followed. The 2D-histogram we denote as f (tb, tx). The biexciton decay is expressed as f(tb) = ∑txf(tb, tx) which is the projection onto the x-axis (see blue arrows). The exciton decay is calculated as f (tx) = ∑tbf (tb, tx + tb), which corresponds to a projection onto the y-axis with a shear transformation (see red arrows). The shear mapping sets the diagonal as the new x-axis, leading to an exciton decay that is not influenced by the decay of the biexciton. The shown parameters τx(b) are the lifetimes of the states and correspond to an exponential decay fit. (c, d) shows the same for dot3 at 30K, where the biexciton is in resonance with the cavity. The shape of the temporal correlation in (c) changed compared to (a).

Fig. 4
Fig. 4

Change of Tr ρ x 2 with temperature. The green triangle is the result of dot0. The red square is of dot1. The blue filled circles are the results from dot2 and the black open circles are measurements from dot3. The dot names are explained in the text. Lines are connecting the data points for better clarity.

Tables (1)

Tables Icon

Table 1 Detunings Δb for the biexciton to the cavity for the different investigated quantum dots at different temperatures. The error for all values is 20 GHz since the cavity is very broad and its central wavelength is not accurately determinable. The exciton has a detuning to the cavity of Δx ≈ Δb − 640(30) GHz for all investigated quantum dots

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| Ψ = 1 2 ( | early b | early x + e i ϕ | late b | late x ) ,
Φ ( t b , t x ) = 2 τ b τ x e t b τ b θ ( t b ) e t x t b τ x θ ( t x t b ) ,
Tr ρ x 2 = τ x τ b + τ x ,

Metrics