Abstract

An approach to compute the polarizability tensor of magnetic nanoparticles having general ellipsoidal shape is presented. We find a surprisingly excellent quantitative agreement between calculated and experimental magneto-optical spectra measured in the polar Kerr configuration from nickel nanodisks of large size (exceeding 100 nm) with circular and elliptical shape. In spite of its approximations and simplicity, the formalism presented here captures the essential physics of the interplay between magneto-optical activity and the plasmonic resonance of the individual particle. The results highlight the key role of the dynamic depolarization effects to account for the magneto-optical properties of plasmonic nanostructures.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
    [CrossRef]
  2. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [CrossRef] [PubMed]
  3. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [CrossRef]
  4. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006).
    [CrossRef] [PubMed]
  5. G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A, Pure Appl. Opt. 11(11), 114023 (2009).
    [CrossRef]
  6. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
  7. S. Melle, J. L. Menéndez, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Magneto-optical properties of nickel nanowire arrays,” Appl. Phys. Lett. 83(22), 4547–4549 (2003).
    [CrossRef]
  8. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations,” Phys. Rev. Lett. 98(7), 077401 (2007).
    [CrossRef] [PubMed]
  9. Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
    [CrossRef]
  10. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
    [CrossRef] [PubMed]
  11. V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
    [CrossRef] [PubMed]
  12. J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
    [CrossRef] [PubMed]
  13. T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60(14), 1426–1429 (1988).
    [CrossRef] [PubMed]
  14. J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202–205 (2008).
    [CrossRef] [PubMed]
  15. J. B. González-Díaz, B. Sepulveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97(4), 043114 (2010).
    [CrossRef]
  16. J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater. 24(10), OP36–OP41 (2012).
    [CrossRef] [PubMed]
  17. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
    [CrossRef]
  18. G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. Ujué González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16(20), 16104–16112 (2008).
    [CrossRef] [PubMed]
  19. F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
    [CrossRef]
  20. J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
    [CrossRef]
  21. J. B. González-Díaz, J. M. García-Martín, A. García-Martín, D. Navas, A. Asenjo, M. Vázquez, M. Hernández-Vélez, and G. Armelles, “Plasmon-enhanced magneto-optical activity in ferromagnetic membranes,” Appl. Phys. Lett. 94(26), 263101 (2009).
    [CrossRef]
  22. P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9(4), 1644–1650 (2009).
    [CrossRef] [PubMed]
  23. E. Th. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81(5), 054424 (2010).
    [CrossRef]
  24. L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
    [CrossRef] [PubMed]
  25. M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
    [CrossRef] [PubMed]
  26. D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (electrostatic resonances),” Phys. Rev. Lett. 91(25), 253902 (2003).
    [CrossRef] [PubMed]
  27. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
    [CrossRef]
  28. A. F. Stevenson, “Electromagnetic scattering by an ellipsoid in the third approximation,” J. Appl. Phys. 24(9), 1143–1151 (1953).
    [CrossRef]
  29. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
    [CrossRef]
  30. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8(11), 581–583 (1983).
    [CrossRef] [PubMed]
  31. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2(6), 931–949 (1985).
    [CrossRef]
  32. A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B 26(3), 517–527 (2009).
    [CrossRef]
  33. A. Lakhtakia, “Rayleigh scattering by bianisotropic ellipsoid in a biisotropic medium,” Int. J. Electron. 71(6), 1057–1062 (1991).
    [CrossRef]
  34. A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. Mod. Phys. C 3(3), 583–603 (1992).
  35. R. Landauer, “The electrical resistance of binary metallic mixtures,” J. Appl. Phys. 23(7), 779–784 (1952).
    [CrossRef]
  36. D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12(8), 3368–3373 (1975).
    [CrossRef]
  37. M. Schubert, T. E. Tiwald, and J. A. Woollam, “Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry,” Appl. Opt. 38(1), 177–187 (1999).
    [CrossRef] [PubMed]
  38. J. Zak, E. R. Mook, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1–2), 107–123 (1990).
    [CrossRef]
  39. Š. Višňovský, R. Lopusnik, M. Bauer, J. Bok, J. Fassbender, and B. Hillebrands, “Magnetooptic ellipsometry in multilayers at arbitrary magnetization,” Opt. Express 9(3), 121–135 (2001).
    [CrossRef] [PubMed]
  40. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19(23), 4297–4302 (2007).
    [CrossRef]
  41. R. A. de la Osa, J. F. Saiz, M. Moreno, P. Vavassori, and A. Berger, “Transverse magneto-optical effects in nanoscale disks,” Phys. Rev. B 85(6), 064414 (2012).
    [CrossRef]
  42. D. Y. K. Ko and J. C. Inkson, “Matrix method for tunnelling in heterostructures: resonant tunnelling in multilayer systems,” Phys. Rev. B 38(14), 9945–9951 (1988).
    [CrossRef]
  43. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
    [CrossRef]
  44. B. Caballero, A. Garcia Martin, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B 85(24), 245103 (2012).
    [CrossRef]
  45. Z. J. Yang and M. R. Scheinfein, “Combined three-axis surface magneto-optical Kerr effects in the study of surface and ultrathin-film magnetism,” J. Appl. Phys. 74(11), 6810–6823 (1993).
    [CrossRef]
  46. H. Kang and G. W. Milton, “Solutions to the Pólya–Szegö conjecture and the weak Eshelby conjecture,” Arch. Ration. Mech. Anal. 188(1), 93–116 (2008).
    [CrossRef]
  47. W. L. Bragg and A. B. Pippard, “The form birefringence of macromolecules,” Acta Crystallogr. 6(11), 865–867 (1953).
    [CrossRef]
  48. One should consider also the phase difference due to the incoming light hitting a finite size body. There are several ways to account for this phase difference reported in literature [30, 32, 49]. Although, we verified that inclusion of these corrections have negligible effects, and therefore for sake of clarity we neglect them. We point out, in addition, that for the particular geometry used in our experiments, namely perpendicular incidence over flat disks, this phase difference effects are rigorously zero.
  49. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
    [CrossRef]
  50. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  51. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  52. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  53. V. G. Farafonov, V. B. Il’in, and M. S. Prokop’eva, “Light scattering by homogeneous and multilayer ellipsoids in the quasi-static approximation,” Opt. Spectrosc. 92(4), 567–576 (2002).
    [CrossRef]
  54. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
    [CrossRef] [PubMed]
  55. L. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media, (Ed. Pergamon, 1984)
  56. For a proper comparison, it is necessary to establish the association between Dx, Dy and Dz and D|| and D⊥ from Moroz. Based on the definitions of the eccentricities given in the text, our prolate profile is characterized by ax = az < ay, so Dx and Dz are equivalent to D|| and Dy to D⊥, whereas the oblate profile is characterized by ax = az < ay, so that Dx is equivalent this time to D⊥, while Dy and Dz toD||.
  57. http://www.nanogune.eu/en/research/nanomagnetism/polarizability-calculator/.
  58. L. A. Golovan, S. V. Zabotnov, V. Yu. Tinoshenko, and P. K. Kashkarov, “Consideration for the dynamic depolarization in the effective-medium model for description of optical properties for anisotropic nanostructured semiconductors,” Semiconductors 43(2), 218–222 (2009).
    [CrossRef]
  59. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 203(359-371), 385–420 (1904).
    [CrossRef]
  60. A. Lakhtakia, “General theory of Maxwell-Garnett model for particulate composites with bi-isotropic host materials,” Int. J. Electron. 73(6), 1355–1362 (1992).
    [CrossRef]
  61. M. Abe, “Derivation of non-diagonal effective dielectric-permeability tensors for magnetized granular composites,” Phys. Rev. B 53(11), 7065–7075 (1996).
    [CrossRef]
  62. M. Abe and T. Suwa, “Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70(23), 235103 (2004).
    [CrossRef]
  63. P. M. Hui and D. Stroud, “Theory of Faraday rotation by dilute suspensions of small particles,” Appl. Phys. Lett. 50(15), 950–952 (1987).
    [CrossRef]
  64. T. K. Xia, P. M. Hui, and D. Stroud, “Theory of Faraday rotation in granular magnetic materials,” J. Appl. Phys. 67(6), 2736–2741 (1990).
    [CrossRef]
  65. M. J. Freiser, “A survey of magnetooptic effects,” IEEE Trans. Magn. 4(2), 152–161 (1968).
    [CrossRef]
  66. This value for the embedding medium refractive index is chosen since the nano-disks embedded in air have one side in contact with the glass substrate. In the calculation we don’t account for the dispersion in the disks size, and we assume that the diameters are the average ones, although the dispersion in diameter can be easily included in Eq. (6) (following Ref. [62]), if required.
  67. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).
  68. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
    [CrossRef] [PubMed]
  69. C. Fourn and C. Brosseau, “Electrostatic resonances of heterostructures with negative permittivity: homogenization formalisms versus finite-element modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 016603 (2008).
    [CrossRef] [PubMed]
  70. A. Mejdoubi and C. Brosseau, “Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: application to core-shell inclusions,” J. Appl. Phys. 102(9), 094104 (2007).
    [CrossRef]
  71. P. Vavassori, “Polarization modulation technique for magneto-optical quantitative vector magnetometry,” Appl. Phys. Lett. 77(11), 1605–1607 (2000).
    [CrossRef]
  72. G. S. Krinchik and V. A. Artem’ev, “Magneto-optical properties of Ni, Co, and Fe in the ultraviolet visible, and infrared parts of the spectrum,” Sov. Phys. JTEP 26(6), 1080–1085 (1968).
  73. Š. Višňovský, V. Pařízek, M. Nývlt, P. Kielar, V. Prosser, and R. Krishnan, “Magneto-optical Kerr spectra of nickel,” J. Magn. Magn. Mater. 127(1–2), 135–139 (1993).
    [CrossRef]
  74. S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express 18(4), 3556–3567 (2010).
    [CrossRef] [PubMed]

2013

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).

2012

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater. 24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[CrossRef]

M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
[CrossRef] [PubMed]

R. A. de la Osa, J. F. Saiz, M. Moreno, P. Vavassori, and A. Berger, “Transverse magneto-optical effects in nanoscale disks,” Phys. Rev. B 85(6), 064414 (2012).
[CrossRef]

B. Caballero, A. Garcia Martin, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B 85(24), 245103 (2012).
[CrossRef]

2011

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[CrossRef] [PubMed]

2010

S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express 18(4), 3556–3567 (2010).
[CrossRef] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[CrossRef]

J. B. González-Díaz, B. Sepulveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97(4), 043114 (2010).
[CrossRef]

E. Th. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81(5), 054424 (2010).
[CrossRef]

2009

J. B. González-Díaz, J. M. García-Martín, A. García-Martín, D. Navas, A. Asenjo, M. Vázquez, M. Hernández-Vélez, and G. Armelles, “Plasmon-enhanced magneto-optical activity in ferromagnetic membranes,” Appl. Phys. Lett. 94(26), 263101 (2009).
[CrossRef]

P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9(4), 1644–1650 (2009).
[CrossRef] [PubMed]

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[CrossRef] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A, Pure Appl. Opt. 11(11), 114023 (2009).
[CrossRef]

A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B 26(3), 517–527 (2009).
[CrossRef]

L. A. Golovan, S. V. Zabotnov, V. Yu. Tinoshenko, and P. K. Kashkarov, “Consideration for the dynamic depolarization in the effective-medium model for description of optical properties for anisotropic nanostructured semiconductors,” Semiconductors 43(2), 218–222 (2009).
[CrossRef]

2008

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

C. Fourn and C. Brosseau, “Electrostatic resonances of heterostructures with negative permittivity: homogenization formalisms versus finite-element modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 016603 (2008).
[CrossRef] [PubMed]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. Ujué González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16(20), 16104–16112 (2008).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202–205 (2008).
[CrossRef] [PubMed]

H. Kang and G. W. Milton, “Solutions to the Pólya–Szegö conjecture and the weak Eshelby conjecture,” Arch. Ration. Mech. Anal. 188(1), 93–116 (2008).
[CrossRef]

2007

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19(23), 4297–4302 (2007).
[CrossRef]

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations,” Phys. Rev. Lett. 98(7), 077401 (2007).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

A. Mejdoubi and C. Brosseau, “Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: application to core-shell inclusions,” J. Appl. Phys. 102(9), 094104 (2007).
[CrossRef]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
[CrossRef]

2006

2005

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

2004

M. Abe and T. Suwa, “Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70(23), 235103 (2004).
[CrossRef]

2003

D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (electrostatic resonances),” Phys. Rev. Lett. 91(25), 253902 (2003).
[CrossRef] [PubMed]

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

S. Melle, J. L. Menéndez, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Magneto-optical properties of nickel nanowire arrays,” Appl. Phys. Lett. 83(22), 4547–4549 (2003).
[CrossRef]

2002

V. G. Farafonov, V. B. Il’in, and M. S. Prokop’eva, “Light scattering by homogeneous and multilayer ellipsoids in the quasi-static approximation,” Opt. Spectrosc. 92(4), 567–576 (2002).
[CrossRef]

2001

2000

P. Vavassori, “Polarization modulation technique for magneto-optical quantitative vector magnetometry,” Appl. Phys. Lett. 77(11), 1605–1607 (2000).
[CrossRef]

1999

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

M. Schubert, T. E. Tiwald, and J. A. Woollam, “Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry,” Appl. Opt. 38(1), 177–187 (1999).
[CrossRef] [PubMed]

1996

M. Abe, “Derivation of non-diagonal effective dielectric-permeability tensors for magnetized granular composites,” Phys. Rev. B 53(11), 7065–7075 (1996).
[CrossRef]

1993

Š. Višňovský, V. Pařízek, M. Nývlt, P. Kielar, V. Prosser, and R. Krishnan, “Magneto-optical Kerr spectra of nickel,” J. Magn. Magn. Mater. 127(1–2), 135–139 (1993).
[CrossRef]

Z. J. Yang and M. R. Scheinfein, “Combined three-axis surface magneto-optical Kerr effects in the study of surface and ultrathin-film magnetism,” J. Appl. Phys. 74(11), 6810–6823 (1993).
[CrossRef]

1992

A. Lakhtakia, “General theory of Maxwell-Garnett model for particulate composites with bi-isotropic host materials,” Int. J. Electron. 73(6), 1355–1362 (1992).
[CrossRef]

A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. Mod. Phys. C 3(3), 583–603 (1992).

1991

A. Lakhtakia, “Rayleigh scattering by bianisotropic ellipsoid in a biisotropic medium,” Int. J. Electron. 71(6), 1057–1062 (1991).
[CrossRef]

1990

J. Zak, E. R. Mook, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1–2), 107–123 (1990).
[CrossRef]

T. K. Xia, P. M. Hui, and D. Stroud, “Theory of Faraday rotation in granular magnetic materials,” J. Appl. Phys. 67(6), 2736–2741 (1990).
[CrossRef]

1988

D. Y. K. Ko and J. C. Inkson, “Matrix method for tunnelling in heterostructures: resonant tunnelling in multilayer systems,” Phys. Rev. B 38(14), 9945–9951 (1988).
[CrossRef]

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60(14), 1426–1429 (1988).
[CrossRef] [PubMed]

1987

P. M. Hui and D. Stroud, “Theory of Faraday rotation by dilute suspensions of small particles,” Appl. Phys. Lett. 50(15), 950–952 (1987).
[CrossRef]

1985

1983

1982

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[CrossRef]

1975

D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12(8), 3368–3373 (1975).
[CrossRef]

1968

M. J. Freiser, “A survey of magnetooptic effects,” IEEE Trans. Magn. 4(2), 152–161 (1968).
[CrossRef]

G. S. Krinchik and V. A. Artem’ev, “Magneto-optical properties of Ni, Co, and Fe in the ultraviolet visible, and infrared parts of the spectrum,” Sov. Phys. JTEP 26(6), 1080–1085 (1968).

1953

A. F. Stevenson, “Electromagnetic scattering by an ellipsoid in the third approximation,” J. Appl. Phys. 24(9), 1143–1151 (1953).
[CrossRef]

W. L. Bragg and A. B. Pippard, “The form birefringence of macromolecules,” Acta Crystallogr. 6(11), 865–867 (1953).
[CrossRef]

1952

R. Landauer, “The electrical resistance of binary metallic mixtures,” J. Appl. Phys. 23(7), 779–784 (1952).
[CrossRef]

1904

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 203(359-371), 385–420 (1904).
[CrossRef]

Abe, M.

M. Abe and T. Suwa, “Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70(23), 235103 (2004).
[CrossRef]

M. Abe, “Derivation of non-diagonal effective dielectric-permeability tensors for magnetized granular composites,” Phys. Rev. B 53(11), 7065–7075 (1996).
[CrossRef]

Acimovic, S.

Aizpurua, J.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

Åkerman, J.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Alaverdyan, Y.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202–205 (2008).
[CrossRef] [PubMed]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19(23), 4297–4302 (2007).
[CrossRef]

Albaladejo, S.

Albella, P.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

Alonso-González, P.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

Armelles, G.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater. 24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express 18(4), 3556–3567 (2010).
[CrossRef] [PubMed]

J. B. González-Díaz, B. Sepulveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97(4), 043114 (2010).
[CrossRef]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[CrossRef]

J. B. González-Díaz, J. M. García-Martín, A. García-Martín, D. Navas, A. Asenjo, M. Vázquez, M. Hernández-Vélez, and G. Armelles, “Plasmon-enhanced magneto-optical activity in ferromagnetic membranes,” Appl. Phys. Lett. 94(26), 263101 (2009).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A, Pure Appl. Opt. 11(11), 114023 (2009).
[CrossRef]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202–205 (2008).
[CrossRef] [PubMed]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. Ujué González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16(20), 16104–16112 (2008).
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006).
[CrossRef] [PubMed]

S. Melle, J. L. Menéndez, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Magneto-optical properties of nickel nanowire arrays,” Appl. Phys. Lett. 83(22), 4547–4549 (2003).
[CrossRef]

Artem’ev, V. A.

G. S. Krinchik and V. A. Artem’ev, “Magneto-optical properties of Ni, Co, and Fe in the ultraviolet visible, and infrared parts of the spectrum,” Sov. Phys. JTEP 26(6), 1080–1085 (1968).

Asenjo, A.

J. B. González-Díaz, J. M. García-Martín, A. García-Martín, D. Navas, A. Asenjo, M. Vázquez, M. Hernández-Vélez, and G. Armelles, “Plasmon-enhanced magneto-optical activity in ferromagnetic membranes,” Appl. Phys. Lett. 94(26), 263101 (2009).
[CrossRef]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Awano, H.

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60(14), 1426–1429 (1988).
[CrossRef] [PubMed]

Badenes, G.

Bader, S. D.

J. Zak, E. R. Mook, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1–2), 107–123 (1990).
[CrossRef]

Banthí, J. C.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater. 24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

Bauer, M.

Belotelov, V. I.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations,” Phys. Rev. Lett. 98(7), 077401 (2007).
[CrossRef] [PubMed]

Berger, A.

R. A. de la Osa, J. F. Saiz, M. Moreno, P. Vavassori, and A. Berger, “Transverse magneto-optical effects in nanoscale disks,” Phys. Rev. B 85(6), 064414 (2012).
[CrossRef]

Bok, J.

Bonanni, V.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

Bonetti, S.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Bragg, W. L.

W. L. Bragg and A. B. Pippard, “The form birefringence of macromolecules,” Acta Crystallogr. 6(11), 865–867 (1953).
[CrossRef]

Bratschitsch, R.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[CrossRef]

Brosseau, C.

C. Fourn and C. Brosseau, “Electrostatic resonances of heterostructures with negative permittivity: homogenization formalisms versus finite-element modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 016603 (2008).
[CrossRef] [PubMed]

A. Mejdoubi and C. Brosseau, “Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: application to core-shell inclusions,” J. Appl. Phys. 102(9), 094104 (2007).
[CrossRef]

Caballero, B.

B. Caballero, A. Garcia Martin, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B 85(24), 245103 (2012).
[CrossRef]

Caicedo, J. M.

M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
[CrossRef] [PubMed]

Calle, A.

Carminati, R.

Carpenter, E. E.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Carroll, K. J.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater. 24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A, Pure Appl. Opt. 11(11), 114023 (2009).
[CrossRef]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202–205 (2008).
[CrossRef] [PubMed]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. Ujué González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16(20), 16104–16112 (2008).
[CrossRef] [PubMed]

Cesario, J.

Chakrabarty, A.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[CrossRef]

Chen, J.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

Clavero, C.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Cohen, A. E.

P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9(4), 1644–1650 (2009).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Ctistis, G.

E. Th. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81(5), 054424 (2010).
[CrossRef]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[CrossRef] [PubMed]

Cuevas, J. C.

B. Caballero, A. Garcia Martin, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B 85(24), 245103 (2012).
[CrossRef]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

de la Osa, R. A.

R. A. de la Osa, J. F. Saiz, M. Moreno, P. Vavassori, and A. Berger, “Transverse magneto-optical effects in nanoscale disks,” Phys. Rev. B 85(6), 064414 (2012).
[CrossRef]

Dmitriev, A.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19(23), 4297–4302 (2007).
[CrossRef]

Doskolovich, L. L.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations,” Phys. Rev. Lett. 98(7), 077401 (2007).
[CrossRef] [PubMed]

Esumi, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[CrossRef]

Fainstein, A.

M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
[CrossRef] [PubMed]

Farafonov, V. G.

V. G. Farafonov, V. B. Il’in, and M. S. Prokop’eva, “Light scattering by homogeneous and multilayer ellipsoids in the quasi-static approximation,” Opt. Spectrosc. 92(4), 567–576 (2002).
[CrossRef]

Fassbender, J.

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[CrossRef] [PubMed]

Ferreiro-Vila, E.

E. Th. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81(5), 054424 (2010).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A, Pure Appl. Opt. 11(11), 114023 (2009).
[CrossRef]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Fourn, C.

C. Fourn and C. Brosseau, “Electrostatic resonances of heterostructures with negative permittivity: homogenization formalisms versus finite-element modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 016603 (2008).
[CrossRef] [PubMed]

Fredkin, D. R.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (electrostatic resonances),” Phys. Rev. Lett. 91(25), 253902 (2003).
[CrossRef] [PubMed]

Fredriksson, H.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19(23), 4297–4302 (2007).
[CrossRef]

Freiser, M. J.

M. J. Freiser, “A survey of magnetooptic effects,” IEEE Trans. Magn. 4(2), 152–161 (1968).
[CrossRef]

Froufe-Pérez, L. S.

Fumagalli, P.

E. Th. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81(5), 054424 (2010).
[CrossRef]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[CrossRef] [PubMed]

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

García, F.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater. 24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

García de Abajo, F. J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Garcia Martin, A.

B. Caballero, A. Garcia Martin, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B 85(24), 245103 (2012).
[CrossRef]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater. 24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express 18(4), 3556–3567 (2010).
[CrossRef] [PubMed]

E. Th. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81(5), 054424 (2010).
[CrossRef]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[CrossRef]

J. B. González-Díaz, B. Sepulveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97(4), 043114 (2010).
[CrossRef]

J. B. González-Díaz, J. M. García-Martín, A. García-Martín, D. Navas, A. Asenjo, M. Vázquez, M. Hernández-Vélez, and G. Armelles, “Plasmon-enhanced magneto-optical activity in ferromagnetic membranes,” Appl. Phys. Lett. 94(26), 263101 (2009).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A, Pure Appl. Opt. 11(11), 114023 (2009).
[CrossRef]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202–205 (2008).
[CrossRef] [PubMed]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. Ujué González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16(20), 16104–16112 (2008).
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

García-Martín, J. M.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[CrossRef]

J. B. González-Díaz, J. M. García-Martín, A. García-Martín, D. Navas, A. Asenjo, M. Vázquez, M. Hernández-Vélez, and G. Armelles, “Plasmon-enhanced magneto-optical activity in ferromagnetic membranes,” Appl. Phys. Lett. 94(26), 263101 (2009).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A, Pure Appl. Opt. 11(11), 114023 (2009).
[CrossRef]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. Ujué González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16(20), 16104–16112 (2008).
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202–205 (2008).
[CrossRef] [PubMed]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[CrossRef] [PubMed]

Giersig, M.

E. Th. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81(5), 054424 (2010).
[CrossRef]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[CrossRef] [PubMed]

Golovan, L. A.

L. A. Golovan, S. V. Zabotnov, V. Yu. Tinoshenko, and P. K. Kashkarov, “Consideration for the dynamic depolarization in the effective-medium model for description of optical properties for anisotropic nanostructured semiconductors,” Semiconductors 43(2), 218–222 (2009).
[CrossRef]

Gómez-Medina, R.

Goñi, A. R.

M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
[CrossRef] [PubMed]

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater. 24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A, Pure Appl. Opt. 11(11), 114023 (2009).
[CrossRef]

González-Díaz, J. B.

J. B. González-Díaz, B. Sepulveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97(4), 043114 (2010).
[CrossRef]

J. B. González-Díaz, J. M. García-Martín, A. García-Martín, D. Navas, A. Asenjo, M. Vázquez, M. Hernández-Vélez, and G. Armelles, “Plasmon-enhanced magneto-optical activity in ferromagnetic membranes,” Appl. Phys. Lett. 94(26), 263101 (2009).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A, Pure Appl. Opt. 11(11), 114023 (2009).
[CrossRef]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202–205 (2008).
[CrossRef] [PubMed]

G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. Ujué González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16(20), 16104–16112 (2008).
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

Gordon, J. P.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[CrossRef]

Gösele, U.

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

S. Melle, J. L. Menéndez, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Magneto-optical properties of nickel nanowire arrays,” Appl. Phys. Lett. 83(22), 4547–4549 (2003).
[CrossRef]

Gu, D.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Gutek, J.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[CrossRef] [PubMed]

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[CrossRef] [PubMed]

Hernández-Vélez, M.

J. B. González-Díaz, J. M. García-Martín, A. García-Martín, D. Navas, A. Asenjo, M. Vázquez, M. Hernández-Vélez, and G. Armelles, “Plasmon-enhanced magneto-optical activity in ferromagnetic membranes,” Appl. Phys. Lett. 94(26), 263101 (2009).
[CrossRef]

Herranz, G.

M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
[CrossRef] [PubMed]

Hillebrands, B.

Hillenbrand, R.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

Huba, Z.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Hui, P. M.

T. K. Xia, P. M. Hui, and D. Stroud, “Theory of Faraday rotation in granular magnetic materials,” J. Appl. Phys. 67(6), 2736–2741 (1990).
[CrossRef]

P. M. Hui and D. Stroud, “Theory of Faraday rotation by dilute suspensions of small particles,” Appl. Phys. Lett. 50(15), 950–952 (1987).
[CrossRef]

Huth, F.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

Il’in, V. B.

V. G. Farafonov, V. B. Il’in, and M. S. Prokop’eva, “Light scattering by homogeneous and multilayer ellipsoids in the quasi-static approximation,” Opt. Spectrosc. 92(4), 567–576 (2002).
[CrossRef]

Inkson, J. C.

D. Y. K. Ko and J. C. Inkson, “Matrix method for tunnelling in heterostructures: resonant tunnelling in multilayer systems,” Phys. Rev. B 38(14), 9945–9951 (1988).
[CrossRef]

Jain, P. K.

P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9(4), 1644–1650 (2009).
[CrossRef] [PubMed]

Käll, M.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202–205 (2008).
[CrossRef] [PubMed]

Kang, H.

H. Kang and G. W. Milton, “Solutions to the Pólya–Szegö conjecture and the weak Eshelby conjecture,” Arch. Ration. Mech. Anal. 188(1), 93–116 (2008).
[CrossRef]

Kapaklis, V.

E. Th. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81(5), 054424 (2010).
[CrossRef]

Kasemo, B.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19(23), 4297–4302 (2007).
[CrossRef]

Kashkarov, P. K.

L. A. Golovan, S. V. Zabotnov, V. Yu. Tinoshenko, and P. K. Kashkarov, “Consideration for the dynamic depolarization in the effective-medium model for description of optical properties for anisotropic nanostructured semiconductors,” Semiconductors 43(2), 218–222 (2009).
[CrossRef]

Katayama, T.

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60(14), 1426–1429 (1988).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kielar, P.

Š. Višňovský, V. Pařízek, M. Nývlt, P. Kielar, V. Prosser, and R. Krishnan, “Magneto-optical Kerr spectra of nickel,” J. Magn. Magn. Mater. 127(1–2), 135–139 (1993).
[CrossRef]

Ko, D. Y. K.

D. Y. K. Ko and J. C. Inkson, “Matrix method for tunnelling in heterostructures: resonant tunnelling in multilayer systems,” Phys. Rev. B 38(14), 9945–9951 (1988).
[CrossRef]

Koshizuka, N.

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60(14), 1426–1429 (1988).
[CrossRef] [PubMed]

Krinchik, G. S.

G. S. Krinchik and V. A. Artem’ev, “Magneto-optical properties of Ni, Co, and Fe in the ultraviolet visible, and infrared parts of the spectrum,” Sov. Phys. JTEP 26(6), 1080–1085 (1968).

Krishnan, R.

Š. Višňovský, V. Pařízek, M. Nývlt, P. Kielar, V. Prosser, and R. Krishnan, “Magneto-optical Kerr spectra of nickel,” J. Magn. Magn. Mater. 127(1–2), 135–139 (1993).
[CrossRef]

Kuipers, L.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
[CrossRef]

Kuwata, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, “General theory of Maxwell-Garnett model for particulate composites with bi-isotropic host materials,” Int. J. Electron. 73(6), 1355–1362 (1992).
[CrossRef]

A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. Mod. Phys. C 3(3), 583–603 (1992).

A. Lakhtakia, “Rayleigh scattering by bianisotropic ellipsoid in a biisotropic medium,” Int. J. Electron. 71(6), 1057–1062 (1991).
[CrossRef]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Landauer, R.

R. Landauer, “The electrical resistance of binary metallic mixtures,” J. Appl. Phys. 23(7), 779–784 (1952).
[CrossRef]

Langhammer, C.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19(23), 4297–4302 (2007).
[CrossRef]

Lechuga, L. M.

Leitenstorfer, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[CrossRef]

Li, J.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Liao, P. F.

M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2(6), 931–949 (1985).
[CrossRef]

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Liu, C.

J. Zak, E. R. Mook, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1–2), 107–123 (1990).
[CrossRef]

Liu, X. H.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Liu, Z.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Liz-Marzán, L. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Lopusnik, R.

Lukaszew, R. A.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[CrossRef] [PubMed]

Marinchio, H.

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 203(359-371), 385–420 (1904).
[CrossRef]

Mayergoyz, I. D.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (electrostatic resonances),” Phys. Rev. Lett. 91(25), 253902 (2003).
[CrossRef] [PubMed]

Meier, M.

Mejdoubi, A.

A. Mejdoubi and C. Brosseau, “Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: application to core-shell inclusions,” J. Appl. Phys. 102(9), 094104 (2007).
[CrossRef]

Melle, S.

S. Melle, J. L. Menéndez, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Magneto-optical properties of nickel nanowire arrays,” Appl. Phys. Lett. 83(22), 4547–4549 (2003).
[CrossRef]

Menéndez, J. L.

S. Melle, J. L. Menéndez, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Magneto-optical properties of nickel nanowire arrays,” Appl. Phys. Lett. 83(22), 4547–4549 (2003).
[CrossRef]

Meneses-Rodríguez, D.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater. 24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

Milton, G. W.

H. Kang and G. W. Milton, “Solutions to the Pólya–Szegö conjecture and the weak Eshelby conjecture,” Arch. Ration. Mech. Anal. 188(1), 93–116 (2008).
[CrossRef]

Minkowski, F.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[CrossRef]

Miyano, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[CrossRef]

Mook, E. R.

J. Zak, E. R. Mook, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1–2), 107–123 (1990).
[CrossRef]

Moreno, M.

R. A. de la Osa, J. F. Saiz, M. Moreno, P. Vavassori, and A. Berger, “Transverse magneto-optical effects in nanoscale disks,” Phys. Rev. B 85(6), 064414 (2012).
[CrossRef]

Moroz, A.

Mulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Navas, D.

J. B. González-Díaz, J. M. García-Martín, A. García-Martín, D. Navas, A. Asenjo, M. Vázquez, M. Hernández-Vélez, and G. Armelles, “Plasmon-enhanced magneto-optical activity in ferromagnetic membranes,” Appl. Phys. Lett. 94(26), 263101 (2009).
[CrossRef]

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

S. Melle, J. L. Menéndez, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Magneto-optical properties of nickel nanowire arrays,” Appl. Phys. Lett. 83(22), 4547–4549 (2003).
[CrossRef]

Nielsch, K.

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

S. Melle, J. L. Menéndez, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Magneto-optical properties of nickel nanowire arrays,” Appl. Phys. Lett. 83(22), 4547–4549 (2003).
[CrossRef]

Nishihara, Y.

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60(14), 1426–1429 (1988).
[CrossRef] [PubMed]

Nogués, J.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Nývlt, M.

Š. Višňovský, V. Pařízek, M. Nývlt, P. Kielar, V. Prosser, and R. Krishnan, “Magneto-optical Kerr spectra of nickel,” J. Magn. Magn. Mater. 127(1–2), 135–139 (1993).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Pakizeh, T.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Papaioannou, E.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[CrossRef] [PubMed]

Papaioannou, E. Th.

E. Th. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81(5), 054424 (2010).
[CrossRef]

Parízek, V.

Š. Višňovský, V. Pařízek, M. Nývlt, P. Kielar, V. Prosser, and R. Krishnan, “Magneto-optical Kerr spectra of nickel,” J. Magn. Magn. Mater. 127(1–2), 135–139 (1993).
[CrossRef]

Pascu, O.

M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Patoka, P.

E. Th. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81(5), 054424 (2010).
[CrossRef]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[CrossRef] [PubMed]

Pippard, A. B.

W. L. Bragg and A. B. Pippard, “The form birefringence of macromolecules,” Acta Crystallogr. 6(11), 865–867 (1953).
[CrossRef]

Pirzadeh, Z.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Prokop’eva, M. S.

V. G. Farafonov, V. B. Il’in, and M. S. Prokop’eva, “Light scattering by homogeneous and multilayer ellipsoids in the quasi-static approximation,” Opt. Spectrosc. 92(4), 567–576 (2002).
[CrossRef]

Prosser, V.

Š. Višňovský, V. Pařízek, M. Nývlt, P. Kielar, V. Prosser, and R. Krishnan, “Magneto-optical Kerr spectra of nickel,” J. Magn. Magn. Mater. 127(1–2), 135–139 (1993).
[CrossRef]

Quidant, R.

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Roig, A.

M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
[CrossRef] [PubMed]

Rubio-Roy, M.

M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
[CrossRef] [PubMed]

Sáenz, J. J.

Saiz, J. F.

R. A. de la Osa, J. F. Saiz, M. Moreno, P. Vavassori, and A. Berger, “Transverse magneto-optical effects in nanoscale disks,” Phys. Rev. B 85(6), 064414 (2012).
[CrossRef]

Sandtke, M.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Scheinfein, M. R.

Z. J. Yang and M. R. Scheinfein, “Combined three-axis surface magneto-optical Kerr effects in the study of surface and ultrathin-film magnetism,” J. Appl. Phys. 74(11), 6810–6823 (1993).
[CrossRef]

Schmidt, M.

M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
[CrossRef] [PubMed]

Schubert, M.

Sepulveda, B.

J. B. González-Díaz, B. Sepulveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97(4), 043114 (2010).
[CrossRef]

Sepúlveda, B.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202–205 (2008).
[CrossRef] [PubMed]

B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006).
[CrossRef] [PubMed]

Shi, L.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Shi, Z.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Stevenson, A. F.

A. F. Stevenson, “Electromagnetic scattering by an ellipsoid in the third approximation,” J. Appl. Phys. 24(9), 1143–1151 (1953).
[CrossRef]

Stroud, D.

T. K. Xia, P. M. Hui, and D. Stroud, “Theory of Faraday rotation in granular magnetic materials,” J. Appl. Phys. 67(6), 2736–2741 (1990).
[CrossRef]

P. M. Hui and D. Stroud, “Theory of Faraday rotation by dilute suspensions of small particles,” Appl. Phys. Lett. 50(15), 950–952 (1987).
[CrossRef]

D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12(8), 3368–3373 (1975).
[CrossRef]

Sun, K.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[CrossRef]

Sutherland, D. S.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19(23), 4297–4302 (2007).
[CrossRef]

Suwa, T.

M. Abe and T. Suwa, “Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70(23), 235103 (2004).
[CrossRef]

Suzuki, Y.

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60(14), 1426–1429 (1988).
[CrossRef] [PubMed]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Tamaru, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[CrossRef]

Temnov, V. V.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[CrossRef]

Thomay, T.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[CrossRef]

Tinoshenko, V. Yu.

L. A. Golovan, S. V. Zabotnov, V. Yu. Tinoshenko, and P. K. Kashkarov, “Consideration for the dynamic depolarization in the effective-medium model for description of optical properties for anisotropic nanostructured semiconductors,” Semiconductors 43(2), 218–222 (2009).
[CrossRef]

Tiwald, T. E.

Tognalli, N. G.

M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
[CrossRef] [PubMed]

Torrado, J. F.

S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express 18(4), 3556–3567 (2010).
[CrossRef] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A, Pure Appl. Opt. 11(11), 114023 (2009).
[CrossRef]

Ujué González, M.

Vavassori, P.

R. A. de la Osa, J. F. Saiz, M. Moreno, P. Vavassori, and A. Berger, “Transverse magneto-optical effects in nanoscale disks,” Phys. Rev. B 85(6), 064414 (2012).
[CrossRef]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

P. Vavassori, “Polarization modulation technique for magneto-optical quantitative vector magnetometry,” Appl. Phys. Lett. 77(11), 1605–1607 (2000).
[CrossRef]

Vázquez, M.

J. B. González-Díaz, J. M. García-Martín, A. García-Martín, D. Navas, A. Asenjo, M. Vázquez, M. Hernández-Vélez, and G. Armelles, “Plasmon-enhanced magneto-optical activity in ferromagnetic membranes,” Appl. Phys. Lett. 94(26), 263101 (2009).
[CrossRef]

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

S. Melle, J. L. Menéndez, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Magneto-optical properties of nickel nanowire arrays,” Appl. Phys. Lett. 83(22), 4547–4549 (2003).
[CrossRef]

Višnovský, Š.

Š. Višňovský, R. Lopusnik, M. Bauer, J. Bok, J. Fassbender, and B. Hillebrands, “Magnetooptic ellipsometry in multilayers at arbitrary magnetization,” Opt. Express 9(3), 121–135 (2001).
[CrossRef] [PubMed]

Š. Višňovský, V. Pařízek, M. Nývlt, P. Kielar, V. Prosser, and R. Krishnan, “Magneto-optical Kerr spectra of nickel,” J. Magn. Magn. Mater. 127(1–2), 135–139 (1993).
[CrossRef]

Vlasin, O.

M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
[CrossRef] [PubMed]

Walsworth, R.

P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9(4), 1644–1650 (2009).
[CrossRef] [PubMed]

Wang, F.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[CrossRef]

Wang, L.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Wehrspohn, R. B.

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

S. Melle, J. L. Menéndez, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Magneto-optical properties of nickel nanowire arrays,” Appl. Phys. Lett. 83(22), 4547–4549 (2003).
[CrossRef]

Wei, Q.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[CrossRef]

Wei, S. J.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[CrossRef]

Wokaun, A.

Woollam, J. A.

Xia, T. K.

T. K. Xia, P. M. Hui, and D. Stroud, “Theory of Faraday rotation in granular magnetic materials,” J. Appl. Phys. 67(6), 2736–2741 (1990).
[CrossRef]

Xia, Y. J.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Xiao, Y.

P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9(4), 1644–1650 (2009).
[CrossRef] [PubMed]

Yang, Z. J.

Z. J. Yang and M. R. Scheinfein, “Combined three-axis surface magneto-optical Kerr effects in the study of surface and ultrathin-film magnetism,” J. Appl. Phys. 74(11), 6810–6823 (1993).
[CrossRef]

Zabotnov, S. V.

L. A. Golovan, S. V. Zabotnov, V. Yu. Tinoshenko, and P. K. Kashkarov, “Consideration for the dynamic depolarization in the effective-medium model for description of optical properties for anisotropic nanostructured semiconductors,” Semiconductors 43(2), 218–222 (2009).
[CrossRef]

Zäch, M.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19(23), 4297–4302 (2007).
[CrossRef]

Zak, J.

J. Zak, E. R. Mook, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1–2), 107–123 (1990).
[CrossRef]

Zhang, X.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Zhang, Z.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zhou, S. M.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Zi, J.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Zvezdin, A. K.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations,” Phys. Rev. Lett. 98(7), 077401 (2007).
[CrossRef] [PubMed]

Acta Crystallogr.

W. L. Bragg and A. B. Pippard, “The form birefringence of macromolecules,” Acta Crystallogr. 6(11), 865–867 (1953).
[CrossRef]

Adv. Mater.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater. 19(23), 4297–4302 (2007).
[CrossRef]

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater. 24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

Adv. Opt. Mater.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).

Appl. Opt.

Appl. Phys. Lett.

S. Melle, J. L. Menéndez, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Magneto-optical properties of nickel nanowire arrays,” Appl. Phys. Lett. 83(22), 4547–4549 (2003).
[CrossRef]

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

J. B. González-Díaz, J. M. García-Martín, A. García-Martín, D. Navas, A. Asenjo, M. Vázquez, M. Hernández-Vélez, and G. Armelles, “Plasmon-enhanced magneto-optical activity in ferromagnetic membranes,” Appl. Phys. Lett. 94(26), 263101 (2009).
[CrossRef]

J. B. González-Díaz, B. Sepulveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97(4), 043114 (2010).
[CrossRef]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[CrossRef]

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[CrossRef]

P. M. Hui and D. Stroud, “Theory of Faraday rotation by dilute suspensions of small particles,” Appl. Phys. Lett. 50(15), 950–952 (1987).
[CrossRef]

P. Vavassori, “Polarization modulation technique for magneto-optical quantitative vector magnetometry,” Appl. Phys. Lett. 77(11), 1605–1607 (2000).
[CrossRef]

Arch. Ration. Mech. Anal.

H. Kang and G. W. Milton, “Solutions to the Pólya–Szegö conjecture and the weak Eshelby conjecture,” Arch. Ration. Mech. Anal. 188(1), 93–116 (2008).
[CrossRef]

Chem. Rev.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[CrossRef] [PubMed]

Chem. Soc. Rev.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

IEEE Trans. Magn.

M. J. Freiser, “A survey of magnetooptic effects,” IEEE Trans. Magn. 4(2), 152–161 (1968).
[CrossRef]

Int. J. Electron.

A. Lakhtakia, “General theory of Maxwell-Garnett model for particulate composites with bi-isotropic host materials,” Int. J. Electron. 73(6), 1355–1362 (1992).
[CrossRef]

A. Lakhtakia, “Rayleigh scattering by bianisotropic ellipsoid in a biisotropic medium,” Int. J. Electron. 71(6), 1057–1062 (1991).
[CrossRef]

Int. J. Mod. Phys. C

A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. Mod. Phys. C 3(3), 583–603 (1992).

J. Appl. Phys.

R. Landauer, “The electrical resistance of binary metallic mixtures,” J. Appl. Phys. 23(7), 779–784 (1952).
[CrossRef]

A. F. Stevenson, “Electromagnetic scattering by an ellipsoid in the third approximation,” J. Appl. Phys. 24(9), 1143–1151 (1953).
[CrossRef]

T. K. Xia, P. M. Hui, and D. Stroud, “Theory of Faraday rotation in granular magnetic materials,” J. Appl. Phys. 67(6), 2736–2741 (1990).
[CrossRef]

A. Mejdoubi and C. Brosseau, “Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: application to core-shell inclusions,” J. Appl. Phys. 102(9), 094104 (2007).
[CrossRef]

Z. J. Yang and M. R. Scheinfein, “Combined three-axis surface magneto-optical Kerr effects in the study of surface and ultrathin-film magnetism,” J. Appl. Phys. 74(11), 6810–6823 (1993).
[CrossRef]

J. Magn. Magn. Mater.

Š. Višňovský, V. Pařízek, M. Nývlt, P. Kielar, V. Prosser, and R. Krishnan, “Magneto-optical Kerr spectra of nickel,” J. Magn. Magn. Mater. 127(1–2), 135–139 (1993).
[CrossRef]

J. Zak, E. R. Mook, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater. 89(1–2), 107–123 (1990).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A, Pure Appl. Opt. 11(11), 114023 (2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Langmuir

M. Rubio-Roy, O. Vlasin, O. Pascu, J. M. Caicedo, M. Schmidt, A. R. Goñi, N. G. Tognalli, A. Fainstein, A. Roig, and G. Herranz, “Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures,” Langmuir 28(24), 9010–9020 (2012).
[CrossRef] [PubMed]

Nano Lett.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9(4), 1644–1650 (2009).
[CrossRef] [PubMed]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[CrossRef] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Nat. Photonics

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. M. García-Martín, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

V. G. Farafonov, V. B. Il’in, and M. S. Prokop’eva, “Light scattering by homogeneous and multilayer ellipsoids in the quasi-static approximation,” Opt. Spectrosc. 92(4), 567–576 (2002).
[CrossRef]

Philos. Trans. R. Soc. Lond. B Biol. Sci.

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 203(359-371), 385–420 (1904).
[CrossRef]

Phys. Rev. B

M. Abe, “Derivation of non-diagonal effective dielectric-permeability tensors for magnetized granular composites,” Phys. Rev. B 53(11), 7065–7075 (1996).
[CrossRef]

M. Abe and T. Suwa, “Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70(23), 235103 (2004).
[CrossRef]

R. A. de la Osa, J. F. Saiz, M. Moreno, P. Vavassori, and A. Berger, “Transverse magneto-optical effects in nanoscale disks,” Phys. Rev. B 85(6), 064414 (2012).
[CrossRef]

D. Y. K. Ko and J. C. Inkson, “Matrix method for tunnelling in heterostructures: resonant tunnelling in multilayer systems,” Phys. Rev. B 38(14), 9945–9951 (1988).
[CrossRef]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

B. Caballero, A. Garcia Martin, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B 85(24), 245103 (2012).
[CrossRef]

D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12(8), 3368–3373 (1975).
[CrossRef]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

E. Th. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81(5), 054424 (2010).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

C. Fourn and C. Brosseau, “Electrostatic resonances of heterostructures with negative permittivity: homogenization formalisms versus finite-element modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 016603 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations,” Phys. Rev. Lett. 98(7), 077401 (2007).
[CrossRef] [PubMed]

T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60(14), 1426–1429 (1988).
[CrossRef] [PubMed]

D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (electrostatic resonances),” Phys. Rev. Lett. 91(25), 253902 (2003).
[CrossRef] [PubMed]

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[CrossRef]

Semiconductors

L. A. Golovan, S. V. Zabotnov, V. Yu. Tinoshenko, and P. K. Kashkarov, “Consideration for the dynamic depolarization in the effective-medium model for description of optical properties for anisotropic nanostructured semiconductors,” Semiconductors 43(2), 218–222 (2009).
[CrossRef]

Small

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202–205 (2008).
[CrossRef] [PubMed]

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011).
[CrossRef] [PubMed]

Sov. Phys. JTEP

G. S. Krinchik and V. A. Artem’ev, “Magneto-optical properties of Ni, Co, and Fe in the ultraviolet visible, and infrared parts of the spectrum,” Sov. Phys. JTEP 26(6), 1080–1085 (1968).

Other

This value for the embedding medium refractive index is chosen since the nano-disks embedded in air have one side in contact with the glass substrate. In the calculation we don’t account for the dispersion in the disks size, and we assume that the diameters are the average ones, although the dispersion in diameter can be easily included in Eq. (6) (following Ref. [62]), if required.

S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).

One should consider also the phase difference due to the incoming light hitting a finite size body. There are several ways to account for this phase difference reported in literature [30, 32, 49]. Although, we verified that inclusion of these corrections have negligible effects, and therefore for sake of clarity we neglect them. We point out, in addition, that for the particular geometry used in our experiments, namely perpendicular incidence over flat disks, this phase difference effects are rigorously zero.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

L. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media, (Ed. Pergamon, 1984)

For a proper comparison, it is necessary to establish the association between Dx, Dy and Dz and D|| and D⊥ from Moroz. Based on the definitions of the eccentricities given in the text, our prolate profile is characterized by ax = az < ay, so Dx and Dz are equivalent to D|| and Dy to D⊥, whereas the oblate profile is characterized by ax = az < ay, so that Dx is equivalent this time to D⊥, while Dy and Dz toD||.

http://www.nanogune.eu/en/research/nanomagnetism/polarizability-calculator/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scheme of a general ellipsoid embedded in a non-magnetic host medium. The ellipsoid is under the influence of an acting field E1, and, due to the induced dipole moments, the electric field E2 inside it changes.

Fig. 2
Fig. 2

Numerical calculation of the dynamic and static terms of the depolarization field as a function of the ellipsoid aspect ratio. The abscissa and ordinate shows the relative eccentricity in between axes ax and ay, and between ax, and az, respectively for (a) Dx, (b) Dy, (c) Dz,, (d) Lx, (e) Ly , and (f) Lz.

Fig. 3
Fig. 3

(a) Dx, (b) Dy, (c) Dz,, (d) Lx, (e) Ly , and (f) Lz. The continuous and dashed lines correspond to the dynamic and static components for the particular cases of prolate and oblate spheroids, oriented as pictured in between the plots of the two tensors elements.

Fig. 4
Fig. 4

Real (a) and imaginary (b) part of ε e f f x x for a system of Ni spheres embedded in air (the filling factor is 10%), for different values of the particles radius. Real (c) and imaginary (b) parts of ε e f f x x for a system of Ni spheres with radius of 10 nm, embedded in air, for different values of the filling factor. All the calculations are performed considering or not the effect of the dynamic term in Eq. (7).

Fig. 5
Fig. 5

SEM images of the Ni disks with D = 100 nm (a) and with D = 160 nm (b), on glass substrates, made with Hole Colloidal Mask Lithography technique. The thickness is t = 30 nm. The filling factor can be estimated to be around 13% in both cases. Experimental (c) and calculated (d) absorption spectra, defined as 1 – T, where T = It/I0. In the inset it is shown the extinction efficiency Qext calculated using the imaginary part of the polarizability tensor elements related to the two directions considered.

Fig. 6
Fig. 6

Experimental Kerr angle in P-MOKE configuration, for (a) D = 100 nm and (b) D = 160 nm. Calculated spectra for (c) D = 100 nm and (d) D = 160 nm. The calculation is performed for the multilayered system air/effective medium/glass, where nglass = 1.5. The effective medium film thickness is 30 nm and the filling factor is f = 13%. Calculated Kerr angle in P-MOKE configuration for (e) D = 100 nm and (f) D = 160 nm, neglecting the dynamic depolarization factor. In the inset of (f) the calculated Kerr spectra in the P-MOKE configuration for a Ni film 30 nm thick.

Fig. 7
Fig. 7

(a) SEM images of the Ni elliptical disks with Dlong = 160, Dshort = 100 nm and t = 30 nm, on glass substrates, made with Hole Colloidal Mask Lithography. It can be seen that the filling factor is around 2%. (b) Experimental and (c) calculated absorption spectra, defined as 1 – T, where T = It/I0. In the inset it is shown the extinction efficiency Qext calculated using the imaginary part of the polarizability tensor elements related to the two directions considered.

Fig. 8
Fig. 8

(a) Experimental and (b) calculated Kerr angle in P-MOKE configuration for the Ni elliptical disks. The calculation is performed for the multilayered system air/effective medium/glass, where nglass = 1.5. The effective medium film thickness is 30 nm and the filling factor is f = 2%.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

  P = ( ε ˜ 2 ε ˜ 1 ) E 2 = ( ε ˜ 2 ε ˜ 1 ) ( E 1 + E d ) = α ˜ E 1
D x = 3 a x 4 π 0 1 d z ' 0 2 π d θ 0 1 z ' 2 ρ 2 ( 2 a x 2 cos 2 θ + a y 2 sin 2 θ ) + a z 2 z ' 2 [ ρ 2 ( a x 2 cos 2 θ + a y 2 sin 2 θ ) + a z 2 z ' 2 ] 3 / 2 ρ d ρ D y = 3 a y 4 π 0 1 d z ' 0 2 π d θ 0 1 z ' 2 ρ 2 ( a x 2 cos 2 θ + 2 a y 2 sin 2 θ ) + a z 2 z ' 2 [ ρ 2 ( a x 2 cos 2 θ + a y 2 sin 2 θ ) + a z 2 z ' 2 ] 3 / 2 ρ d ρ D z = 3 a z 4 π 0 1 d z ' 0 2 π d θ 0 1 z ' 2 ρ 2 ( a x 2 cos 2 θ + a y 2 sin 2 θ ) + 2 a z 2 z ' 2 [ ρ 2 ( a x 2 cos 2 θ + a y 2 sin 2 θ ) + a z 2 z ' 2 ] 3 / 2 ρ d ρ
α ˜ = ( ε ˜ 2 ε ˜ 1 ) [ I ˜ + ( L ˜ k 2 V 4 π D ˜ i k 3 V 6 π I ˜ ) ( ε ˜ 2 ε ˜ 1 ) ε ˜ 1 1 ] 1
ε ˜ e f f = ε ˜ 1 + f ( ε ˜ 2 ε ˜ 1 ) [ I ˜ + ( 1 f ) ( L ˜ k 2 V 4 π D ˜ i k 3 V 6 π I ˜ ) ( ε ˜ 2 ε ˜ 1 ) ε ˜ 1 1 ] 1

Metrics