Abstract

State-of-the-art Fourier-domain optical coherence tomography (OCT) allows for the acquisition of up to millions of spectral fringes per second. This large amount of data can be used to improve the quality of structural tomograms after effective averaging. Here, we compare three OCT image improvement techniques: magnitude averaging, complex averaging, and spectral and time domain OCT (STdOCT). We evaluate the performance for images on both linear and logarithmic intensity scales and discuss their advantages and disadvantages. We propose the use of the STdOCT approach as it offers the best advantages. Applications to in vivo imaging and speckle reduction are presented.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
    [CrossRef]
  3. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49(16), D30–D61 (2010).
    [CrossRef] [PubMed]
  4. P. Targowski, M. Iwanicka, L. Tymińska-Widmer, M. Sylwestrzak, and E. A. Kwiatkowska, “Structural examination of easel paintings with optical coherence tomography,” Acc. Chem. Res.43(6), 826–836 (2010).
    [CrossRef] [PubMed]
  5. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008).
    [CrossRef] [PubMed]
  6. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  7. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  8. M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt.17(10), 100502 (2012).
    [CrossRef] [PubMed]
  9. T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Proc. SPIE8213, 82131E, 82131E-6 (2012).
    [CrossRef]
  10. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012).
    [CrossRef] [PubMed]
  11. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  12. A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2606–2611 (2005).
    [CrossRef]
  13. P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence tomography,” Meas. Sci. Technol.18(11), 3365–3372 (2007).
    [CrossRef]
  14. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16(9), 6008–6025 (2008).
    [CrossRef] [PubMed]
  15. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express17(13), 10584–10598 (2009).
    [CrossRef] [PubMed]
  16. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express17(16), 14281–14297 (2009).
    [CrossRef] [PubMed]
  17. J. Walther and E. Koch, “Enhanced joint spectral and time domain optical coherence tomography for quantitative flow velocity measurement,” Proc. SPIE8091, 80910L, 80910L-7 (2011).
    [CrossRef]
  18. D. Bukowska, D. Ruminski, D. Szlag, I. Grulkowski, J. Wlodarczyk, M. Szkulmowski, G. Wilczynski, I. Gorczynska, and M. Wojtkowski, “Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography,” J. Biomed. Opt.17(10), 101515 (2012).
    [CrossRef] [PubMed]
  19. B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express3(12), 3138–3152 (2012).
    [CrossRef] [PubMed]
  20. J. W. Goodman, Statistical Optics (Wiley, 2000).

2012 (5)

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt.17(10), 100502 (2012).
[CrossRef] [PubMed]

T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Proc. SPIE8213, 82131E, 82131E-6 (2012).
[CrossRef]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012).
[CrossRef] [PubMed]

D. Bukowska, D. Ruminski, D. Szlag, I. Grulkowski, J. Wlodarczyk, M. Szkulmowski, G. Wilczynski, I. Gorczynska, and M. Wojtkowski, “Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography,” J. Biomed. Opt.17(10), 101515 (2012).
[CrossRef] [PubMed]

B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express3(12), 3138–3152 (2012).
[CrossRef] [PubMed]

2011 (1)

J. Walther and E. Koch, “Enhanced joint spectral and time domain optical coherence tomography for quantitative flow velocity measurement,” Proc. SPIE8091, 80910L, 80910L-7 (2011).
[CrossRef]

2010 (3)

2009 (2)

2008 (3)

2007 (1)

P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence tomography,” Meas. Sci. Technol.18(11), 3365–3372 (2007).
[CrossRef]

2005 (1)

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2606–2611 (2005).
[CrossRef]

2003 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Andre, R.

T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Proc. SPIE8213, 82131E, 82131E-6 (2012).
[CrossRef]

Bajraszewski, T.

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2606–2611 (2005).
[CrossRef]

Biedermann, B. R.

Bukowska, D.

D. Bukowska, D. Ruminski, D. Szlag, I. Grulkowski, J. Wlodarczyk, M. Szkulmowski, G. Wilczynski, I. Gorczynska, and M. Wojtkowski, “Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography,” J. Biomed. Opt.17(10), 101515 (2012).
[CrossRef] [PubMed]

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt.17(10), 100502 (2012).
[CrossRef] [PubMed]

Cable, A.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Y. L.

Choi, S. S.

Eigenwillig, C. M.

T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Proc. SPIE8213, 82131E, 82131E-6 (2012).
[CrossRef]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gorczynska, I.

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt.17(10), 100502 (2012).
[CrossRef] [PubMed]

D. Bukowska, D. Ruminski, D. Szlag, I. Grulkowski, J. Wlodarczyk, M. Szkulmowski, G. Wilczynski, I. Gorczynska, and M. Wojtkowski, “Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography,” J. Biomed. Opt.17(10), 101515 (2012).
[CrossRef] [PubMed]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2606–2611 (2005).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

D. Bukowska, D. Ruminski, D. Szlag, I. Grulkowski, J. Wlodarczyk, M. Szkulmowski, G. Wilczynski, I. Gorczynska, and M. Wojtkowski, “Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography,” J. Biomed. Opt.17(10), 101515 (2012).
[CrossRef] [PubMed]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express17(16), 14281–14297 (2009).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Proc. SPIE8213, 82131E, 82131E-6 (2012).
[CrossRef]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Iwanicka, M.

P. Targowski, M. Iwanicka, L. Tymińska-Widmer, M. Sylwestrzak, and E. A. Kwiatkowska, “Structural examination of easel paintings with optical coherence tomography,” Acc. Chem. Res.43(6), 826–836 (2010).
[CrossRef] [PubMed]

Jiang, J.

Kaluzny, J. J.

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2606–2611 (2005).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Karnowski, K.

Kennedy, B. F.

Kennedy, K. M.

Klein, T.

T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Proc. SPIE8213, 82131E, 82131E-6 (2012).
[CrossRef]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Koch, E.

J. Walther and E. Koch, “Enhanced joint spectral and time domain optical coherence tomography for quantitative flow velocity measurement,” Proc. SPIE8091, 80910L, 80910L-7 (2011).
[CrossRef]

Kowalczyk, A.

Kwiatkowska, E. A.

P. Targowski, M. Iwanicka, L. Tymińska-Widmer, M. Sylwestrzak, and E. A. Kwiatkowska, “Structural examination of easel paintings with optical coherence tomography,” Acc. Chem. Res.43(6), 826–836 (2010).
[CrossRef] [PubMed]

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Miller, D. T.

Pfeiffer, T.

T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Proc. SPIE8213, 82131E, 82131E-6 (2012).
[CrossRef]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ruminski, D.

D. Bukowska, D. Ruminski, D. Szlag, I. Grulkowski, J. Wlodarczyk, M. Szkulmowski, G. Wilczynski, I. Gorczynska, and M. Wojtkowski, “Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography,” J. Biomed. Opt.17(10), 101515 (2012).
[CrossRef] [PubMed]

Sampson, D. D.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sylwestrzak, M.

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt.17(10), 100502 (2012).
[CrossRef] [PubMed]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012).
[CrossRef] [PubMed]

P. Targowski, M. Iwanicka, L. Tymińska-Widmer, M. Sylwestrzak, and E. A. Kwiatkowska, “Structural examination of easel paintings with optical coherence tomography,” Acc. Chem. Res.43(6), 826–836 (2010).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt.17(10), 100502 (2012).
[CrossRef] [PubMed]

D. Bukowska, D. Ruminski, D. Szlag, I. Grulkowski, J. Wlodarczyk, M. Szkulmowski, G. Wilczynski, I. Gorczynska, and M. Wojtkowski, “Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography,” J. Biomed. Opt.17(10), 101515 (2012).
[CrossRef] [PubMed]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012).
[CrossRef] [PubMed]

B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express3(12), 3138–3152 (2012).
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express17(16), 14281–14297 (2009).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2606–2611 (2005).
[CrossRef]

Szlag, D.

Targowski, P.

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt.17(10), 100502 (2012).
[CrossRef] [PubMed]

P. Targowski, M. Iwanicka, L. Tymińska-Widmer, M. Sylwestrzak, and E. A. Kwiatkowska, “Structural examination of easel paintings with optical coherence tomography,” Acc. Chem. Res.43(6), 826–836 (2010).
[CrossRef] [PubMed]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2606–2611 (2005).
[CrossRef]

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence tomography,” Meas. Sci. Technol.18(11), 3365–3372 (2007).
[CrossRef]

Tyminska-Widmer, L.

P. Targowski, M. Iwanicka, L. Tymińska-Widmer, M. Sylwestrzak, and E. A. Kwiatkowska, “Structural examination of easel paintings with optical coherence tomography,” Acc. Chem. Res.43(6), 826–836 (2010).
[CrossRef] [PubMed]

Walther, J.

J. Walther and E. Koch, “Enhanced joint spectral and time domain optical coherence tomography for quantitative flow velocity measurement,” Proc. SPIE8091, 80910L, 80910L-7 (2011).
[CrossRef]

Wang, R. K.

P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence tomography,” Meas. Sci. Technol.18(11), 3365–3372 (2007).
[CrossRef]

Werner, J. S.

Wieser, W.

T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Proc. SPIE8213, 82131E, 82131E-6 (2012).
[CrossRef]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Wilczynski, G.

D. Bukowska, D. Ruminski, D. Szlag, I. Grulkowski, J. Wlodarczyk, M. Szkulmowski, G. Wilczynski, I. Gorczynska, and M. Wojtkowski, “Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography,” J. Biomed. Opt.17(10), 101515 (2012).
[CrossRef] [PubMed]

Wlodarczyk, J.

D. Bukowska, D. Ruminski, D. Szlag, I. Grulkowski, J. Wlodarczyk, M. Szkulmowski, G. Wilczynski, I. Gorczynska, and M. Wojtkowski, “Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography,” J. Biomed. Opt.17(10), 101515 (2012).
[CrossRef] [PubMed]

Wojtkowski, M.

D. Bukowska, D. Ruminski, D. Szlag, I. Grulkowski, J. Wlodarczyk, M. Szkulmowski, G. Wilczynski, I. Gorczynska, and M. Wojtkowski, “Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography,” J. Biomed. Opt.17(10), 101515 (2012).
[CrossRef] [PubMed]

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt.17(10), 100502 (2012).
[CrossRef] [PubMed]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012).
[CrossRef] [PubMed]

B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express3(12), 3138–3152 (2012).
[CrossRef] [PubMed]

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49(16), D30–D61 (2010).
[CrossRef] [PubMed]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express17(16), 14281–14297 (2009).
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2606–2611 (2005).
[CrossRef]

Zawadzki, R. J.

Zhang, Y.

Acc. Chem. Res. (1)

P. Targowski, M. Iwanicka, L. Tymińska-Widmer, M. Sylwestrzak, and E. A. Kwiatkowska, “Structural examination of easel paintings with optical coherence tomography,” Acc. Chem. Res.43(6), 826–836 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

J. Biomed. Opt. (2)

D. Bukowska, D. Ruminski, D. Szlag, I. Grulkowski, J. Wlodarczyk, M. Szkulmowski, G. Wilczynski, I. Gorczynska, and M. Wojtkowski, “Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography,” J. Biomed. Opt.17(10), 101515 (2012).
[CrossRef] [PubMed]

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt.17(10), 100502 (2012).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2606–2611 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence tomography,” Meas. Sci. Technol.18(11), 3365–3372 (2007).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (8)

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express17(16), 14281–14297 (2009).
[CrossRef] [PubMed]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

Proc. SPIE (2)

J. Walther and E. Koch, “Enhanced joint spectral and time domain optical coherence tomography for quantitative flow velocity measurement,” Proc. SPIE8091, 80910L, 80910L-7 (2011).
[CrossRef]

T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Proc. SPIE8213, 82131E, 82131E-6 (2012).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

J. W. Goodman, Statistical Optics (Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic drawing of the tomogram line with parameters used to calculate the image quality metrics: m ¯ s and m ¯ b are the mean values of the signal and background magnitudes in the presence of noise, respectively, and σ s and σ b are the corresponding standard deviations.

Fig. 2
Fig. 2

STdOCT diagram indicating the order of procedures in data averaging for all three techniques. 1. Preprocessing (fixed-pattern noise reduction, resampling to wavenumber space, dispersion compensation). 2. Spatial Fourier transformation (FT) to in-depth position. 3. Magnitude or complex averaging. 3′. Temporal FT to Doppler frequency. 4′. Magnitude detection followed by information extraction in STdOCT processing. For each in-depth position, the signal with the maximum magnitude along the frequency axis is found. The magnitude value is used to create structural images, while the frequency value serves to create velocity maps.

Fig. 3
Fig. 3

Reflecting phantom experiment. PDFs and experimentally obtained histograms of the magnitudes of tomogram lines created with different averaging techniques for 8 averaged A-scans for a data set with s/ σ=1.635 . BCGHIST : histogram of the background magnitudes; SIGHIST : histogram of the signal magnitudes; BCGPDF : theoretical PDF of the background magnitudes; and SIGPDF : theoretical PDF of the signal magnitudes.

Fig. 4
Fig. 4

Reflecting phantom experiment. Image parameters calculated from the magnitudes of the tomogram lines as a function of the number of averaged A-scans for different averaging techniques of a data set with s/ σ=1.635 . Image parameters from left to right: m ¯ s : mean value of the signal; m ¯ b : mean value of the background noise; σ s : standard deviation of the signal; and σ b : standard deviation of the background noise.

Fig. 5
Fig. 5

(a). Images of the reflecting phantom for different averaging algorithms and number of averaged A-scans. Each tomogram is composed of 2 000 lines, and the dynamic range in all images is the same. Red rectangles indicate the regions of the tomograms used to calculate the image parameters in Fig. 6. For this data set, s/ σ=1.635 . (b). Tomogram lines before dynamic range equalization taken from the images shown in (a). To emphasize the difference in the dynamic range, all the lines have equal maximal signal values. Arrows show the position of the reflecting layer. MAG : magnitude averaging; STD : STdOCT averaging; and CPX : complex averaging.

Fig. 6
Fig. 6

Reflecting phantom experiment. Image quality metrics as a function of the number of averaged A-scans for different averaging techniques of a data set with s/ σ=1.635 . The intensity of the tomogram used for the calculation was equalized, which results in a constant dynamic range. C: speckle contrast; SNR : signal-to-noise ratio; DR : dynamic range; CNR : contrast-to-noise ratio; NO AVG : single A-scan; MAG : magnitude averaging; STD : STdOCT averaging; and CPX : complex averaging.

Fig. 7
Fig. 7

(a). Images of the uniform-scattering sample for different averaging algorithms and number of averaged A-scans. The effective lateral resolution is 14, 19, and 115 µm for N = 4, 16, and 256, respectively. The dynamic range in all images is equal. Red rectangles indicate the regions used to calculate the image parameters in Fig. 8. (b). Tomogram lines before dynamic range equalization of the images shown in (a). To emphasize the differences in the dynamic range, all the lines have equal maximal signal values. MAG : magnitude averaging; STD : STdOCT averaging; and CPX : complex averaging.

Fig. 8
Fig. 8

Scattering phantom experiment. Image quality metrics as a function of the number of averaged A-scans for different averaging techniques. The intensity of the tomogram used for the calculation of the parameters was equalized and results in a constant dynamic range. C: speckle contrast; SNR : signal-to-noise ratio; DR : dynamic range; CNR : contrast-to-noise ratio; NO AVG : single A-scan; MAG : magnitude averaging; STD : STdOCT averaging; and CPX : complex averaging.

Fig. 9
Fig. 9

In vivo imaging of a human optic nerve head. A total of 10 000 A-scans over a 6 mm lateral direction were obtained. The effective lateral resolution is 17.6 µm and 46.4 µm for N = 16 and N = 64, respectively. Insets are magnified by 1.7 in both directions. 1. Vitreous humour. 2. Blood vessel. 3. Choroid.

Fig. 10
Fig. 10

In vivo imaging of a human macula lutea with speckle averaging.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

SNR= m ¯ s σ b ,
C= σ s m ¯ s ,
DR= m ¯ s m ¯ b ,
CNR= m ¯ s m ¯ b σ s 2 + σ b 2 .
Γ ( 1 ) (z)= Γ ( z )+ η ( 0,σ ),
Γ ( 1 ) (z)= η re ( s,σ )+i η im ( 0,σ ).
M ( 1 ) ( z )= | Γ ( 1 ) ( z ) | 2 = Γ ( 1 ) ( z ) Γ ( 1 ) * ( z ).
p M ( 1 ) ( m,s,σ )= 1 2 σ 2 exp{ m+ s 2 2 σ 2 } I 0 ( m s σ 2 ),
m ¯ ( 1 ) = s 2 +2 σ 2 ,
σ ( 1 ) 2 =4 σ 2 ( σ 2 + s 2 ).
p L ( 1 ) ( l,s,σ )= ln10 2 σ 2 exp{ 10 l + s 2 2 σ 2 } I 0 ( 10 l/2 s σ 2 ) 10 l .
x ¯ = x p X ( x ) dx,
σ X 2 = ( x x ¯ ) 2 p X ( x ) dx,
M ( mag ) ( z,N )= 1 N n=0 N1 M n ( 1 ) ( z ) .
m ¯ ( mag ) = m ¯ ( 1 ) = s 2 +2 σ 2 ,
σ ( mag ) 2 = 1 N σ ( 1 ) 2 = 1 N 4 σ 2 ( σ 2 + s 2 ).
p M ( mag ) ( m,s,σ,N )= F 1 { n=0 N1 F{ p M ( 1 ) ( m,s,σ ) } },
p L ( mag ) ( l,s,σ,N )= p M ( mag ) ( 10 l ,s,σ,N ) 10 l ln10.
M ( cpx ) ( z,N )= ( 1 N n=0 N1 Γ n ( 1 ) ( z ) ) 2 ,
p M ( cpx ) ( m,s,σ,N )= N 2 σ 2 exp{ m+ s 2 2 σ 2 N } I 0 ( m sN σ 2 ).
m ¯ ( cpx ) = s 2 +2 σ N 2 ,
σ ( cpx ) 2 =4 σ N 2 ( σ N 2 + s 2 ).
p L ( cpx ) ( l,s,σ,N )= Nln10 2 σ 2 exp{ 10 l + s 2 2 σ 2 N } I 0 ( 10 l/2 sN σ 2 ) 10 l .
M ( std ) ( z,ω,N )= ( 1 N n=0 N1 exp[ iω t n ] Γ n ( 1 ) ( z ) ) 2 .
M ( std ) ( z,N )= max ω ( M ( std ) ( z,ω,N ) ).
p M ( std ) ( m,s,σ,N )= d dm [ ( 0 m p M ( cpx ) ( m ,0,σ,N ) d m ) N1 0 m p M ( cpx ) ( m ,s,σ,N ) d m ].
p M ( std ) ( m,0,σ,N )= N 2 2 σ 2 exp[ Nm 2 σ 2 ] ( 1exp[ Nm 2 σ 2 ] ) N1 ,
p L ( std ) ( l,s,σ,N )= p M ( std ) ( 10 l ,s,σ,N ) 10 l ln10.
s= m ¯ ( mag ),s m ¯ ( mag ),b ,
σ= m ¯ ( mag ),b /2 .
m new = m old m ¯ b m ¯ s m ¯ b 150.

Metrics