Abstract

Optical interferometric logic gates in metal slot waveguide network are designed and investigated by electromagnetic simulations. The designed logic gates can realize all fundamental logic operations. A single Y-shaped junction can work as logic gate for four logic functions: AND, NOT, OR and XOR. By cascading two Y-shaped junctions, NAND, NOR and XNOR can be realized. The working principle is analyzed in detail. In the simulations, these gates show large intensity contrast for the Boolean logic states of the output. These results can be useful for future integrated optical computing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics4(5), 261–263 (2010).
    [CrossRef]
  2. H. J. Caulfield and J. Westphal, “The logic of optics and the optics of logic,” Inf. Sci.162(1), 21–33 (2004).
    [CrossRef]
  3. L. Qian and H. J. Caulfield, “What can we do with a linear optical logic gate?” Inf. Sci.176(22), 3379–3392 (2006).
    [CrossRef]
  4. Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express15(15), 9287–9292 (2007).
    [CrossRef] [PubMed]
  5. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  6. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express15(3), 924–929 (2007).
    [CrossRef] [PubMed]
  7. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007).
    [CrossRef]
  8. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
    [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
    [CrossRef] [PubMed]
  10. R. M. Dickson and L. A. Lyon, “Unidirectional Plasmon Propagation in Metallic Nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
    [CrossRef]
  11. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
    [CrossRef]
  12. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  13. G. Veronis and S. Fan, “Bends and splitters in metal-dielectirc-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
    [CrossRef]
  14. Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched Silver Nanowires as Controllable Plasmon Routers,” Nano Lett.10(5), 1950–1954 (2010).
    [CrossRef] [PubMed]
  15. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
    [CrossRef] [PubMed]
  16. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
    [CrossRef] [PubMed]
  17. Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano Lett.12(11), 5784–5790 (2012).
    [CrossRef] [PubMed]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]

2012

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano Lett.12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

2011

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

2010

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched Silver Nanowires as Controllable Plasmon Routers,” Nano Lett.10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics4(5), 261–263 (2010).
[CrossRef]

2007

Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express15(15), 9287–9292 (2007).
[CrossRef] [PubMed]

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express15(3), 924–929 (2007).
[CrossRef] [PubMed]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
[CrossRef]

2006

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

L. Qian and H. J. Caulfield, “What can we do with a linear optical logic gate?” Inf. Sci.176(22), 3379–3392 (2006).
[CrossRef]

2005

G. Veronis and S. Fan, “Bends and splitters in metal-dielectirc-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

2004

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

H. J. Caulfield and J. Westphal, “The logic of optics and the optics of logic,” Inf. Sci.162(1), 21–33 (2004).
[CrossRef]

2000

R. M. Dickson and L. A. Lyon, “Unidirectional Plasmon Propagation in Metallic Nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Caulfield, H. J.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics4(5), 261–263 (2010).
[CrossRef]

L. Qian and H. J. Caulfield, “What can we do with a linear optical logic gate?” Inf. Sci.176(22), 3379–3392 (2006).
[CrossRef]

H. J. Caulfield and J. Westphal, “The logic of optics and the optics of logic,” Inf. Sci.162(1), 21–33 (2004).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cong, F.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Dickson, R. M.

R. M. Dickson and L. A. Lyon, “Unidirectional Plasmon Propagation in Metallic Nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
[CrossRef]

Dolev, S.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics4(5), 261–263 (2010).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectirc-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
[CrossRef] [PubMed]

Fang, Y.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched Silver Nanowires as Controllable Plasmon Routers,” Nano Lett.10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Fu, Y.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano Lett.12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Gong, Q.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano Lett.12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Halas, N. J.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
[CrossRef] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched Silver Nanowires as Controllable Plasmon Routers,” Nano Lett.10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007).
[CrossRef]

Hu, X.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano Lett.12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Huang, Y.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched Silver Nanowires as Controllable Plasmon Routers,” Nano Lett.10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Käll, M.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Li, B.

Li, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
[CrossRef] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched Silver Nanowires as Controllable Plasmon Routers,” Nano Lett.10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Lipson, M.

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express15(3), 924–929 (2007).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Liu, N.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
[CrossRef] [PubMed]

Lu, C.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano Lett.12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Lyon, L. A.

R. M. Dickson and L. A. Lyon, “Unidirectional Plasmon Propagation in Metallic Nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
[CrossRef]

Nordlander, P.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
[CrossRef] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched Silver Nanowires as Controllable Plasmon Routers,” Nano Lett.10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Qian, L.

L. Qian and H. J. Caulfield, “What can we do with a linear optical logic gate?” Inf. Sci.176(22), 3379–3392 (2006).
[CrossRef]

Tian, X.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

Veronis, G.

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectirc-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Wang, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

Wei, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
[CrossRef] [PubMed]

Westphal, J.

H. J. Caulfield and J. Westphal, “The logic of optics and the optics of logic,” Inf. Sci.162(1), 21–33 (2004).
[CrossRef]

Xu, H.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched Silver Nanowires as Controllable Plasmon Routers,” Nano Lett.10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Xu, Q.

Yang, H.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano Lett.12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Yue, S.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano Lett.12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
[CrossRef]

Zhang, S.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
[CrossRef] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched Silver Nanowires as Controllable Plasmon Routers,” Nano Lett.10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Zhang, Y.

Appl. Phys. Lett.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectirc-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
[CrossRef]

Inf. Sci.

H. J. Caulfield and J. Westphal, “The logic of optics and the optics of logic,” Inf. Sci.162(1), 21–33 (2004).
[CrossRef]

L. Qian and H. J. Caulfield, “What can we do with a linear optical logic gate?” Inf. Sci.176(22), 3379–3392 (2006).
[CrossRef]

J. Phys. Chem. B

R. M. Dickson and L. A. Lyon, “Unidirectional Plasmon Propagation in Metallic Nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
[CrossRef]

Nano Lett.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano Lett.12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched Silver Nanowires as Controllable Plasmon Routers,” Nano Lett.10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks,” Nano Lett.11(2), 471–475 (2011).
[CrossRef] [PubMed]

Nat Commun

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

Nat. Photonics

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics4(5), 261–263 (2010).
[CrossRef]

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketch of two input port logic gate based on slots in Ag film.

Fig. 2
Fig. 2

(a) Distribution of field intensity |E| 2 of fundamental mode in the simulated metal slot waveguide. (b) Coupling length of two parallel slot waveguide as a function of separation w.

Fig. 3
Fig. 3

Simulation results for the working performance of two input port logic gate. (a) The output power at port O as a function of phase difference between two input signals. The power of two input signals is both I0. (b-d) Distribution of field intensity |E|2 for individual inputs. (b) only one input at port 2; (c) two input signals with Δφ = 2π; (d) two input signals with Δφ = π.

Fig. 4
Fig. 4

Sketch of three input ports logic gate

Fig. 5
Fig. 5

(a) Output power for various phase difference between control beam and signals. (b) Output power for different input power of control beam. In (b), the red crosses correspond to working states for different operations.

Fig. 6
Fig. 6

Distribution of field intensity |E|2 for XNOR logic operations. (a), (b), (c) and (d) correspond to different input patterns, and are in same color coordinate.

Tables (2)

Tables Icon

Table 1 Illustration of the working principle of two input ports gates

Tables Icon

Table 2 Illustration of the working principle of the three input ports gates

Metrics