Abstract

We demonstrated a stable single-frequency laser operating at 2122 nm from a monolithic nonplanar Ho:YAG ring oscillator (NPRO). The Ho:YAG NPRO was resonantly pumped by a 1907 nm Tm:YLF laser built up by ourselves. The maximum multimode output power from the Ho:YAG NPRO was 9.66 W and the slope efficiency was 71.7%. With accurate adjustment of the pump position to make the laser oscillate in single frequency condition, an output power of 8.0 W was obtained with a slope efficiency of 61.4% and an optical-optical efficiency of 50.0%. The power stability of the Ho:YAG NPRO laser was 0.29% at maximum single frequency output power. The beam quality M2 factors were measured to be less than 1.1 in x- and y- directions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B94(1), 81–84 (2009).
    [CrossRef]
  2. J. Li, S. H. Yang, C. M. Zhao, H. Y. Zhang, and W. Xie, “Coupled-cavity concept applied to a highly compact single-frequency laser operating in the 2 μm spectral region,” Appl. Opt.50(10), 1329–1332 (2011).
    [CrossRef] [PubMed]
  3. Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett.7(1), 17–20 (2010).
    [CrossRef]
  4. J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett.7(3), 203–205 (2010).
    [CrossRef]
  5. C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150mW single-frequency output power at 2.02 μm,” Electron. Lett.35(2), 152–153 (1999).
    [CrossRef]
  6. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett.10(2), 65–67 (1985).
    [CrossRef] [PubMed]
  7. I. Freitag, A. Tunnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun.115(5-6), 511–515 (1995).
    [CrossRef]
  8. P. Burdack, T. Fox, M. Bode, and I. Freitag, “1 W of stable single-frequency output at 1.03 mum from a novel, monolithic, non-planar Yb:YAG ring laser operating at room temperature,” Opt. Express14(10), 4363–4367 (2006).
    [CrossRef] [PubMed]
  9. B. Q. Yao, X. M. Duan, D. Fang, Y. J. Zhang, L. Ke, Y. L. Ju, Y. Z. Wang, and G. J. Zhao, “7.3 W of single-frequency output power at 2.09 mum from an Ho:YAG monolithic nonplanar ring laser,” Opt. Lett.33(18), 2161–2163 (2008).
    [CrossRef] [PubMed]
  10. C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett.34(19), 3029–3031 (2009).
    [CrossRef] [PubMed]
  11. C. Gao, L. Zhu, R. Wang, M. Gao, Y. Zheng, and L. Wang, “6.1 W single frequency laser output at 1645 nm from a resonantly pumped Er:YAG nonplanar ring oscillator,” Opt. Lett.37(11), 1859–1861 (2012).
    [CrossRef] [PubMed]
  12. Database laser of NASA, “Emission cross section of Ho:YAG”, http://www.mennerat.fr/gab/References/DatabaseLasers/spectra/spectra.htm
  13. T. M. Kane and T. S. Kubo, “Diode-pumped single-frequency lasers and Q-switched laser using Tm:YAG and Tm,Ho:YAG,” in Advanced Solid State Lasers, G. Dube, ed., Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper ML3.

2012 (1)

2011 (1)

2010 (2)

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett.7(1), 17–20 (2010).
[CrossRef]

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett.7(3), 203–205 (2010).
[CrossRef]

2009 (2)

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B94(1), 81–84 (2009).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett.34(19), 3029–3031 (2009).
[CrossRef] [PubMed]

2008 (1)

2006 (1)

1999 (1)

C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150mW single-frequency output power at 2.02 μm,” Electron. Lett.35(2), 152–153 (1999).
[CrossRef]

1995 (1)

I. Freitag, A. Tunnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun.115(5-6), 511–515 (1995).
[CrossRef]

1985 (1)

Bode, M.

Burdack, P.

Byer, R. L.

Duan, X. M.

Fang, D.

Fox, T.

Freitag, I.

P. Burdack, T. Fox, M. Bode, and I. Freitag, “1 W of stable single-frequency output at 1.03 mum from a novel, monolithic, non-planar Yb:YAG ring laser operating at room temperature,” Opt. Express14(10), 4363–4367 (2006).
[CrossRef] [PubMed]

C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150mW single-frequency output power at 2.02 μm,” Electron. Lett.35(2), 152–153 (1999).
[CrossRef]

I. Freitag, A. Tunnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun.115(5-6), 511–515 (1995).
[CrossRef]

Gao, C.

C. Gao, L. Zhu, R. Wang, M. Gao, Y. Zheng, and L. Wang, “6.1 W single frequency laser output at 1645 nm from a resonantly pumped Er:YAG nonplanar ring oscillator,” Opt. Lett.37(11), 1859–1861 (2012).
[CrossRef] [PubMed]

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett.7(1), 17–20 (2010).
[CrossRef]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B94(1), 81–84 (2009).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett.34(19), 3029–3031 (2009).
[CrossRef] [PubMed]

Gao, M.

C. Gao, L. Zhu, R. Wang, M. Gao, Y. Zheng, and L. Wang, “6.1 W single frequency laser output at 1645 nm from a resonantly pumped Er:YAG nonplanar ring oscillator,” Opt. Lett.37(11), 1859–1861 (2012).
[CrossRef] [PubMed]

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett.7(1), 17–20 (2010).
[CrossRef]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B94(1), 81–84 (2009).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett.34(19), 3029–3031 (2009).
[CrossRef] [PubMed]

Hu, D.

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett.7(3), 203–205 (2010).
[CrossRef]

Ju, Y. L.

Kane, T. J.

Ke, L.

Li, J.

Lin, Z.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett.7(1), 17–20 (2010).
[CrossRef]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B94(1), 81–84 (2009).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett.34(19), 3029–3031 (2009).
[CrossRef] [PubMed]

Svelto, C.

C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150mW single-frequency output power at 2.02 μm,” Electron. Lett.35(2), 152–153 (1999).
[CrossRef]

Tunnermann, A.

I. Freitag, A. Tunnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun.115(5-6), 511–515 (1995).
[CrossRef]

Wang, L.

Wang, R.

C. Gao, L. Zhu, R. Wang, M. Gao, Y. Zheng, and L. Wang, “6.1 W single frequency laser output at 1645 nm from a resonantly pumped Er:YAG nonplanar ring oscillator,” Opt. Lett.37(11), 1859–1861 (2012).
[CrossRef] [PubMed]

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett.7(1), 17–20 (2010).
[CrossRef]

Wang, Y. Z.

Weber, H.

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B94(1), 81–84 (2009).
[CrossRef]

Welling, H.

I. Freitag, A. Tunnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun.115(5-6), 511–515 (1995).
[CrossRef]

Xie, W.

Yang, S.

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett.7(3), 203–205 (2010).
[CrossRef]

Yang, S. H.

Yao, B. Q.

Zhang, H.

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett.7(3), 203–205 (2010).
[CrossRef]

Zhang, H. Y.

Zhang, Y.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett.7(1), 17–20 (2010).
[CrossRef]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B94(1), 81–84 (2009).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett.34(19), 3029–3031 (2009).
[CrossRef] [PubMed]

Zhang, Y. J.

Zhao, C.

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett.7(3), 203–205 (2010).
[CrossRef]

Zhao, C. M.

Zhao, G. J.

Zheng, Y.

Zhu, L.

Appl. Opt. (1)

Appl. Phys. B (1)

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B94(1), 81–84 (2009).
[CrossRef]

Electron. Lett. (1)

C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150mW single-frequency output power at 2.02 μm,” Electron. Lett.35(2), 152–153 (1999).
[CrossRef]

Laser Phys. Lett. (2)

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett.7(1), 17–20 (2010).
[CrossRef]

J. Li, S. Yang, H. Zhang, D. Hu, and C. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett.7(3), 203–205 (2010).
[CrossRef]

Opt. Commun. (1)

I. Freitag, A. Tunnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun.115(5-6), 511–515 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Other (2)

Database laser of NASA, “Emission cross section of Ho:YAG”, http://www.mennerat.fr/gab/References/DatabaseLasers/spectra/spectra.htm

T. M. Kane and T. S. Kubo, “Diode-pumped single-frequency lasers and Q-switched laser using Tm:YAG and Tm,Ho:YAG,” in Advanced Solid State Lasers, G. Dube, ed., Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper ML3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The emission cross section and atmospheric transmissivity of Ho:YAG at 2000 nm to 2200 nm. The atmosphere transmission curve of Fig. 1(b) is drafted by using software of PCmodwin and combining database of modtran. The drafted condition is as follows: model atmosphere of 1976 US standard, 45°slant path, transmission distance of 30 km, observer height at 0 km.

Fig. 2
Fig. 2

Experimental setup of Ho:YAG NPRO laser

Fig. 3
Fig. 3

Fabry-Perot scanning and wavemeter measurement of the Ho:YAG NPRO laser

Fig. 4
Fig. 4

Output power versus pump power of Ho:YAG NPRO laser

Fig. 5
Fig. 5

Laser frequency as a function of the temperature of Ho:YAG crystal.

Fig. 6
Fig. 6

Beam propagation and M2-factors of the single-frequency Ho:YAG NPRO laser. The inserted picture is the two-dimensional profile of the laser beam.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dν dT =ν[ 1 n dn dT +α].

Metrics