Abstract

The time-domain counterpart of traditional spatial holography is formalized and experimentally demonstrated. This concept involves the recording, generation and/or processing of complex (amplitude and phase) optical time-domain signals using intensity-only temporal detection and/or modulation optical devices. The resulting procedures greatly simplify present approaches aimed to similar generation and processing tasks. As a proof-of-concept, we successfully demonstrate a time-domain computer holography scheme. This scheme is used for experimental generation of user-defined complex optical temporal signals, in particular, a sequence of arbitrarily chirped Gaussian-like optical pulses and complex-modulation (16-QAM) optical telecommunication data streams, by CW-light intensity-only modulation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  2. D. Gabor, G. W. Stroke, D. Brumm, A. Funkhouser, and A. Labeyrie, “Reconstruction of phase objects by holography,” Nature 208(5016), 1159–1162 (1965).
    [Crossref]
  3. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52(10), 1123–1128 (1962).
    [Crossref]
  4. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5(6), 967–969 (1966).
    [Crossref] [PubMed]
  5. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
    [Crossref]
  6. M. Kato and T. Suzuki, “Fourier-transform holograms by Fresnel zone-plate achromatic-fringe interferometer,” J. Opt. Soc. Am. 59(3), 303–306 (1969).
    [Crossref]
  7. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
    [Crossref] [PubMed]
  8. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23(15), 1221–1223 (1998).
    [Crossref] [PubMed]
  9. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002).
    [Crossref] [PubMed]
  10. M. L. Huebschman, B. Munjuluri, and H. R. Garner, “Dynamic holographic 3-D image projection,” Opt. Express 11(5), 437–445 (2003).
    [Crossref] [PubMed]
  11. C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt. 45(5), 960–967 (2006).
    [Crossref] [PubMed]
  12. P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
    [Crossref] [PubMed]
  13. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4(2), 332–341 (1998).
  14. X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, and R. Kachru, “Time-domain holographic digital memory,” Science 278(5335), 96–100 (1997).
    [Crossref]
  15. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
    [Crossref]
  16. T. Jannson and J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. 71, 1373–1376 (1981).
  17. J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fiber Bragg gratings,” Electron. Lett. 35(25), 2223–2224 (1999).
    [Crossref]
  18. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006).
    [Crossref]
  19. B. Jalali, D. R. Solli, and S. Gupta, “Silicon photonics: Silicon’s time lens,” Nat. Photonics 3(1), 8–10 (2009).
    [Crossref]
  20. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
    [Crossref] [PubMed]
  21. D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, O. Gerstel, J. P. Heritage, and S. J. B. Yoo, “Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation,” Opt. Express 19(9), 8242–8253 (2011).
    [Crossref] [PubMed]
  22. S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
    [Crossref]
  23. A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “75-km SMF transmission of optical 16 QAM signal generated by a monolithic quad-parallel Mach-Zehnder optical modulator,” IEEE Photon. Technol. Lett. 23(14), 977–979 (2011).
    [Crossref]
  24. S. Yan, X. Weng, Y. Gao, C. Lu, A. P. T. Lau, Y. Ji, L. Liu, and X. Xu, “Generation of square or hexagonal 16-QAM signals using a dual-drive IQ modulator driven by binary signals,” Opt. Express 20(27), 29023–29034 (2012).
    [Crossref] [PubMed]
  25. E. Ip, A. P. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [Crossref] [PubMed]
  26. I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1(2), 308–437 (2009).
    [Crossref]
  27. S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
    [Crossref]

2012 (2)

2011 (2)

D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, O. Gerstel, J. P. Heritage, and S. J. B. Yoo, “Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation,” Opt. Express 19(9), 8242–8253 (2011).
[Crossref] [PubMed]

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “75-km SMF transmission of optical 16 QAM signal generated by a monolithic quad-parallel Mach-Zehnder optical modulator,” IEEE Photon. Technol. Lett. 23(14), 977–979 (2011).
[Crossref]

2010 (2)

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[Crossref]

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

2009 (2)

B. Jalali, D. R. Solli, and S. Gupta, “Silicon photonics: Silicon’s time lens,” Nat. Photonics 3(1), 8–10 (2009).
[Crossref]

I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1(2), 308–437 (2009).
[Crossref]

2008 (1)

2006 (2)

2003 (1)

2002 (1)

1999 (1)

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fiber Bragg gratings,” Electron. Lett. 35(25), 2223–2224 (1999).
[Crossref]

1998 (2)

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4(2), 332–341 (1998).

T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23(15), 1221–1223 (1998).
[Crossref] [PubMed]

1997 (1)

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, and R. Kachru, “Time-domain holographic digital memory,” Science 278(5335), 96–100 (1997).
[Crossref]

1996 (1)

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
[Crossref]

1994 (2)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref] [PubMed]

1981 (1)

1969 (1)

1966 (2)

B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5(6), 967–969 (1966).
[Crossref] [PubMed]

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
[Crossref]

1965 (1)

D. Gabor, G. W. Stroke, D. Brumm, A. Funkhouser, and A. Labeyrie, “Reconstruction of phase objects by holography,” Nature 208(5016), 1159–1162 (1965).
[Crossref]

1962 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Azaña, J.

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fiber Bragg gratings,” Electron. Lett. 35(25), 2223–2224 (1999).
[Crossref]

Bablumian, A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Barros, D. J.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref] [PubMed]

Bayvel, P.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[Crossref]

Blanche, P. A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Brown, B. R.

Brumm, D.

D. Gabor, G. W. Stroke, D. Brumm, A. Funkhouser, and A. Labeyrie, “Reconstruction of phase objects by holography,” Nature 208(5016), 1159–1162 (1965).
[Crossref]

Chen, L. R.

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fiber Bragg gratings,” Electron. Lett. 35(25), 2223–2224 (1999).
[Crossref]

Chiba, A.

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “75-km SMF transmission of optical 16 QAM signal generated by a monolithic quad-parallel Mach-Zehnder optical modulator,” IEEE Photon. Technol. Lett. 23(14), 977–979 (2011).
[Crossref]

Christenson, C.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Ding, Y.

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4(2), 332–341 (1998).

Dorrer, C.

Farsi, A.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

Flores, D.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Fontaine, N. K.

Fridman, M.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

Funkhouser, A.

D. Gabor, G. W. Stroke, D. Brumm, A. Funkhouser, and A. Labeyrie, “Reconstruction of phase objects by holography,” Nature 208(5016), 1159–1162 (1965).
[Crossref]

Gabor, D.

D. Gabor, G. W. Stroke, D. Brumm, A. Funkhouser, and A. Labeyrie, “Reconstruction of phase objects by holography,” Nature 208(5016), 1159–1162 (1965).
[Crossref]

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Gaeta, A. L.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

Gao, Y.

Garner, H. R.

Gavioli, G.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[Crossref]

Geisler, D. J.

Gerstel, O.

Gu, T.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Gupta, S.

B. Jalali, D. R. Solli, and S. Gupta, “Silicon photonics: Silicon’s time lens,” Nat. Photonics 3(1), 8–10 (2009).
[Crossref]

He, T.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref] [PubMed]

Heritage, J. P.

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref] [PubMed]

Higuma, K.

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “75-km SMF transmission of optical 16 QAM signal generated by a monolithic quad-parallel Mach-Zehnder optical modulator,” IEEE Photon. Technol. Lett. 23(14), 977–979 (2011).
[Crossref]

Hsieh, W. Y.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Huebschman, M. L.

Huestis, D. L.

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, and R. Kachru, “Time-domain holographic digital memory,” Science 278(5335), 96–100 (1997).
[Crossref]

Ichikawa, J.

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “75-km SMF transmission of optical 16 QAM signal generated by a monolithic quad-parallel Mach-Zehnder optical modulator,” IEEE Photon. Technol. Lett. 23(14), 977–979 (2011).
[Crossref]

Ip, E.

Jalali, B.

B. Jalali, D. R. Solli, and S. Gupta, “Silicon photonics: Silicon’s time lens,” Nat. Photonics 3(1), 8–10 (2009).
[Crossref]

Jannson, J.

Jannson, T.

Ji, Y.

Kachru, R.

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, and R. Kachru, “Time-domain holographic digital memory,” Science 278(5335), 96–100 (1997).
[Crossref]

Kahn, J. M.

Kathaperumal, M.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Kato, M.

Kawanishi, T.

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “75-km SMF transmission of optical 16 QAM signal generated by a monolithic quad-parallel Mach-Zehnder optical modulator,” IEEE Photon. Technol. Lett. 23(14), 977–979 (2011).
[Crossref]

Killey, R. I.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[Crossref]

Kohler, C.

Kolner, B. H.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

Labeyrie, A.

D. Gabor, G. W. Stroke, D. Brumm, A. Funkhouser, and A. Labeyrie, “Reconstruction of phase objects by holography,” Nature 208(5016), 1159–1162 (1965).
[Crossref]

Lau, A. P.

Lau, A. P. T.

Leith, E. N.

Lin, W.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Liu, L.

Lohmann, A. W.

Lu, C.

Makovejs, S.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[Crossref]

Melloch, M. R.

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4(2), 332–341 (1998).

Mikhailov, V.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[Crossref]

Millar, D. S.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[Crossref]

Munjuluri, B.

Muriel, M. A.

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fiber Bragg gratings,” Electron. Lett. 35(25), 2223–2224 (1999).
[Crossref]

Nguyen, A.

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, and R. Kachru, “Time-domain holographic digital memory,” Science 278(5335), 96–100 (1997).
[Crossref]

Nolte, D. D.

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4(2), 332–341 (1998).

Norwood, R. A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Okawachi, Y.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

Osten, W.

Paraschis, L.

Pedrini, G.

Perry, J. W.

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, and R. Kachru, “Time-domain holographic digital memory,” Science 278(5335), 96–100 (1997).
[Crossref]

Peyghambarian, N.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Rachwal, B.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Sakamoto, T.

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “75-km SMF transmission of optical 16 QAM signal generated by a monolithic quad-parallel Mach-Zehnder optical modulator,” IEEE Photon. Technol. Lett. 23(14), 977–979 (2011).
[Crossref]

Savory, S. J.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[Crossref]

Schwab, X.

Scott, R. P.

Shen, X. A.

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, and R. Kachru, “Time-domain holographic digital memory,” Science 278(5335), 96–100 (1997).
[Crossref]

Shirasaki, M.

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
[Crossref]

Siddiqui, O.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Smith, P. W. E.

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fiber Bragg gratings,” Electron. Lett. 35(25), 2223–2224 (1999).
[Crossref]

Solli, D. R.

B. Jalali, D. R. Solli, and S. Gupta, “Silicon photonics: Silicon’s time lens,” Nat. Photonics 3(1), 8–10 (2009).
[Crossref]

Stroke, G. W.

D. Gabor, G. W. Stroke, D. Brumm, A. Funkhouser, and A. Labeyrie, “Reconstruction of phase objects by holography,” Nature 208(5016), 1159–1162 (1965).
[Crossref]

Sudo, M.

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “75-km SMF transmission of optical 16 QAM signal generated by a monolithic quad-parallel Mach-Zehnder optical modulator,” IEEE Photon. Technol. Lett. 23(14), 977–979 (2011).
[Crossref]

Suzuki, T.

Thomas, J.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Tiziani, H. J.

Upatnieks, J.

van Howe, J.

Voorakaranam, R.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Walmsley, I. A.

Wang, P.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Watanabe, S.

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
[Crossref]

Waters, J. P.

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
[Crossref]

Weiner, A. M.

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4(2), 332–341 (1998).

Weng, X.

Xu, C.

Xu, X.

Yamaguchi, I.

Yamamoto, M.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Yan, S.

Yoo, S. J. B.

Zhang, T.

Adv. Opt. Photon. (1)

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
[Crossref]

Electron. Lett. (1)

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fiber Bragg gratings,” Electron. Lett. 35(25), 2223–2224 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4(2), 332–341 (1998).

IEEE Photon. Technol. Lett. (2)

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[Crossref]

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “75-km SMF transmission of optical 16 QAM signal generated by a monolithic quad-parallel Mach-Zehnder optical modulator,” IEEE Photon. Technol. Lett. 23(14), 977–979 (2011).
[Crossref]

J. Lightwave Technol. (2)

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
[Crossref]

J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006).
[Crossref]

J. Opt. Soc. Am. (3)

Nat. Photonics (1)

B. Jalali, D. R. Solli, and S. Gupta, “Silicon photonics: Silicon’s time lens,” Nat. Photonics 3(1), 8–10 (2009).
[Crossref]

Nature (4)

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[Crossref] [PubMed]

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

D. Gabor, G. W. Stroke, D. Brumm, A. Funkhouser, and A. Labeyrie, “Reconstruction of phase objects by holography,” Nature 208(5016), 1159–1162 (1965).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Science (2)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref] [PubMed]

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, and R. Kachru, “Time-domain holographic digital memory,” Science 278(5335), 96–100 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Space-time duality between classical spatial holography and time-domain holography: (a) Implementation steps of classical spatial holography; (b) Implementation of the concept of time-domain holography as the temporal counterpart of spatial-domain holography. For the sake of simplicity, the optical temporal signals are represented by their amplitude envelope. OC, optical coupler; PD, photodetector; R, resistor; AWG, arbitrary waveform generator; MZM, Mach-Zehnder modulator.

Fig. 2
Fig. 2

Setup used to demonstrate the time-domain equivalent of CGH for optical complex signal generation usign a single MZM. The figure also shows the signal in time (black) and frequency (blue) along the setup. The optical path is represented by black lines, whereas the electrical path is represented by red lines. AWG, electrical arbitrary waveform generator; CW, continous wave; MZM, Mach-Zenhder modulator; EDFA, Erbium-doped fiber amplifier; BP, band pass; PD, photodetector; OSC, sampling oscilloscope.

Fig. 3
Fig. 3

16-symbol sequence of Gaussian pulses arbitrary chirped. (a) Electrical signal v(t) generated by the AWG; (b) Power spectral density (PSD) of the optical signal after the intensity modulation; (c) PSD of the optical signal after the band pass filtering; (d) Intensity of the generated complex waveform (blue) and target intensity (red); (e) Phase of the generated complex waveform (blue), obtained by applying off-line digital signal processing to the electrical interferogram measured in the detection process, and target phase profile (red).

Fig. 4
Fig. 4

1024-symbol 16-QAM optical data stream. (a) A portion of the numerically designed temporal hologram, shown over 16 consecutive symbols, as generated by the electrical AWG; (b) Intensity and (c) phase profiles of the generated complex optical signal (blue line) and target data stream (red line) over the signal portion (16 symbols) shown in (a); (d) Constellation of the generated data stream (blue points) and ideal constellation of a16-QAM signal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i(t) | e S (t)+j e LO (t) | 2 =| e s0 (t) | + 2 i LO + 2 i LO | e s0 (t) |sin( ω i t+{ e s0 (t) }+ ϕ S ϕ LO ),
I(ω) E s0 (ω) E s0 (ω)+ i LO δ(ω)+ 2π i LO E s0 (ω ω i ) e j( ϕ S ϕ LO π/2 ) +2π i LO E s0 (ω ω i ) e j( ϕ S ϕ LO π/2 ) ,
E out (ω) E s0 (ω ω LO ) E s0 (ω ω LO )+ i LO δ(ω ω LO )+ 2π i LO E s0 (ω ω S ) e j( ϕ S ϕ LO π/2 ) +2π i LO E s0 (ω ω S +2 ω LO ) e j( ϕ S ϕ LO π/2 ) .
e s0 (t)= m=1 1024 [ r m exp{ 1 2 (tm T S ) 2 T 0 2 +j ϕ m } ] , r m = i m 2 + q m 2 , ϕ m =arctg( q m i m ),

Metrics