Abstract

We demonstrate the use of a subwavelength planar metal-dielectric resonant cavity to enhance the absorption of germanium photodetectors at wavelengths beyond the material’s direct absorption edge, enabling high responsivity across the entire telecommunications C and L bands. The resonant wavelength of the detectors can be tuned linearly by varying the width of the Ge fin, allowing multiple detectors, each resonant at a different wavelength, to be fabricated in a single-step process. This approach is promising for the development of CMOS-compatible devices suitable for integrated, high-speed, and energy-efficient photodetection at telecommunications wavelengths.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science332(6025), 60–65 (2011).
    [CrossRef] [PubMed]
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
    [CrossRef]
  3. R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems - OSA Technical Digest,” in Optical Fiber Communication Conference (Optical Society of America, 2012), OM2E.6.
  4. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
    [CrossRef]
  5. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express17(10), 7901–7906 (2009).
    [CrossRef] [PubMed]
  6. G. Li, Y. Luo, X. Zheng, G. Masini, A. Mekis, S. Sahni, H. Thacker, J. Yao, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Improving CMOS-compatible Germanium photodetectors,” Opt. Express20(24), 26345–26350 (2012).
    [CrossRef] [PubMed]
  7. J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 11110 (2005).
    [CrossRef]
  8. R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menendez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron.47(2), 213–222 (2011).
    [CrossRef]
  9. J. R. Jain, A. Hryciw, T. M. Baer, D. A. B. Miller, M. L. Brongersma, and R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics6(6), 398–405 (2012).
    [CrossRef]
  10. D. Nam, D. Sukhdeo, A. Roy, K. Balram, S.-L. Cheng, K. C.-Y. Huang, Z. Yuan, M. Brongersma, Y. Nishi, D. Miller, and K. Saraswat, “Strained germanium thin film membrane on silicon substrate for optoelectronics,” Opt. Express19(27), 25866–25872 (2011).
    [CrossRef] [PubMed]
  11. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
    [CrossRef]
  12. O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
    [CrossRef]
  13. C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004).
    [CrossRef]
  14. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
    [CrossRef] [PubMed]
  15. R. Chen, H. Chin, D. A. B. Miller, Kai Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett.17(6), 1271–1273 (2005).
    [CrossRef]
  16. A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett.85(14), 2815–2817 (2004).
    [CrossRef]
  17. J. R. Jain, D.-S. Ly-Gagnon, K. C. Balram, J. S. White, M. L. Brongersma, D. A. B. Miller, and R. T. Howe, “Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics,” Opt. Mater. Express1(6), 1121–1126 (2011).
    [CrossRef]
  18. K. C. Balram and D. A. B. Miller, “Self-aligned silicon fins in metallic slits as a platform for planar wavelength-selective nanoscale resonant photodetectors,” Opt. Express20(20), 22735–22742 (2012).
    [CrossRef] [PubMed]
  19. S. Y. Chou and M. Y. Liu, “Nanoscale tera-hertz metal-semiconductor-metal photodetectors,” IEEE J. Quantum Electron.28(10), 2358–2368 (1992).
    [CrossRef]
  20. A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett.89(25), 252110 (2006).
    [CrossRef]

2012

2011

M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science332(6025), 60–65 (2011).
[CrossRef] [PubMed]

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menendez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron.47(2), 213–222 (2011).
[CrossRef]

J. R. Jain, D.-S. Ly-Gagnon, K. C. Balram, J. S. White, M. L. Brongersma, D. A. B. Miller, and R. T. Howe, “Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics,” Opt. Mater. Express1(6), 1121–1126 (2011).
[CrossRef]

D. Nam, D. Sukhdeo, A. Roy, K. Balram, S.-L. Cheng, K. C.-Y. Huang, Z. Yuan, M. Brongersma, Y. Nishi, D. Miller, and K. Saraswat, “Strained germanium thin film membrane on silicon substrate for optoelectronics,” Opt. Express19(27), 25866–25872 (2011).
[CrossRef] [PubMed]

2010

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

2009

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express17(10), 7901–7906 (2009).
[CrossRef] [PubMed]

2008

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

2006

A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett.89(25), 252110 (2006).
[CrossRef]

2005

R. Chen, H. Chin, D. A. B. Miller, Kai Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett.17(6), 1271–1273 (2005).
[CrossRef]

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 11110 (2005).
[CrossRef]

2004

C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004).
[CrossRef]

A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett.85(14), 2815–2817 (2004).
[CrossRef]

1992

S. Y. Chou and M. Y. Liu, “Nanoscale tera-hertz metal-semiconductor-metal photodetectors,” IEEE J. Quantum Electron.28(10), 2358–2368 (1992).
[CrossRef]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Baer, T. M.

J. R. Jain, A. Hryciw, T. M. Baer, D. A. B. Miller, M. L. Brongersma, and R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics6(6), 398–405 (2012).
[CrossRef]

Balram, K.

Balram, K. C.

Beeler, R.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menendez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron.47(2), 213–222 (2011).
[CrossRef]

Brongersma, M.

Brongersma, M. L.

J. R. Jain, A. Hryciw, T. M. Baer, D. A. B. Miller, M. L. Brongersma, and R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics6(6), 398–405 (2012).
[CrossRef]

J. R. Jain, D.-S. Ly-Gagnon, K. C. Balram, J. S. White, M. L. Brongersma, D. A. B. Miller, and R. T. Howe, “Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics,” Opt. Mater. Express1(6), 1121–1126 (2011).
[CrossRef]

Cannon, D. D.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 11110 (2005).
[CrossRef]

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

Chen, L.

Chen, R.

R. Chen, H. Chin, D. A. B. Miller, Kai Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett.17(6), 1271–1273 (2005).
[CrossRef]

Cheng, B. W.

C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004).
[CrossRef]

Cheng, S.-L.

Chin, H.

R. Chen, H. Chin, D. A. B. Miller, Kai Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett.17(6), 1271–1273 (2005).
[CrossRef]

Chou, S. Y.

S. Y. Chou and M. Y. Liu, “Nanoscale tera-hertz metal-semiconductor-metal photodetectors,” IEEE J. Quantum Electron.28(10), 2358–2368 (1992).
[CrossRef]

Chui, C. O.

A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett.85(14), 2815–2817 (2004).
[CrossRef]

Cunningham, J. E.

Danielson, D. T.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 11110 (2005).
[CrossRef]

Dimoulas, A.

A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett.89(25), 252110 (2006).
[CrossRef]

Dosunmu, O. I.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

Emsley, M. K.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

Evangelou, E. K.

A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett.89(25), 252110 (2006).
[CrossRef]

Harris, J. S.

R. Chen, H. Chin, D. A. B. Miller, Kai Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett.17(6), 1271–1273 (2005).
[CrossRef]

Hilbert, M.

M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science332(6025), 60–65 (2011).
[CrossRef] [PubMed]

Howe, R. T.

J. R. Jain, A. Hryciw, T. M. Baer, D. A. B. Miller, M. L. Brongersma, and R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics6(6), 398–405 (2012).
[CrossRef]

J. R. Jain, D.-S. Ly-Gagnon, K. C. Balram, J. S. White, M. L. Brongersma, D. A. B. Miller, and R. T. Howe, “Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics,” Opt. Mater. Express1(6), 1121–1126 (2011).
[CrossRef]

Hryciw, A.

J. R. Jain, A. Hryciw, T. M. Baer, D. A. B. Miller, M. L. Brongersma, and R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics6(6), 398–405 (2012).
[CrossRef]

Huang, K. C.-Y.

Ishikawa, Y.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 11110 (2005).
[CrossRef]

Jain, J. R.

J. R. Jain, A. Hryciw, T. M. Baer, D. A. B. Miller, M. L. Brongersma, and R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics6(6), 398–405 (2012).
[CrossRef]

J. R. Jain, D.-S. Ly-Gagnon, K. C. Balram, J. S. White, M. L. Brongersma, D. A. B. Miller, and R. T. Howe, “Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics,” Opt. Mater. Express1(6), 1121–1126 (2011).
[CrossRef]

Jongthammanurak, S.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 11110 (2005).
[CrossRef]

Kai Ma,

R. Chen, H. Chin, D. A. B. Miller, Kai Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett.17(6), 1271–1273 (2005).
[CrossRef]

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 11110 (2005).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Kouvetakis, J.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menendez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron.47(2), 213–222 (2011).
[CrossRef]

Krishnamoorthy, A. V.

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Li, C. B.

C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004).
[CrossRef]

Li, G.

Lipson, M.

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 11110 (2005).
[CrossRef]

Liu, M. Y.

S. Y. Chou and M. Y. Liu, “Nanoscale tera-hertz metal-semiconductor-metal photodetectors,” IEEE J. Quantum Electron.28(10), 2358–2368 (1992).
[CrossRef]

López, P.

M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science332(6025), 60–65 (2011).
[CrossRef] [PubMed]

Luo, L. P.

C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004).
[CrossRef]

Luo, Y.

Ly-Gagnon, D.-S.

J. R. Jain, D.-S. Ly-Gagnon, K. C. Balram, J. S. White, M. L. Brongersma, D. A. B. Miller, and R. T. Howe, “Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics,” Opt. Mater. Express1(6), 1121–1126 (2011).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Mao, R. W.

C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004).
[CrossRef]

Masini, G.

Mathews, J.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menendez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron.47(2), 213–222 (2011).
[CrossRef]

Mekis, A.

Menendez, J.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menendez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron.47(2), 213–222 (2011).
[CrossRef]

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 11110 (2005).
[CrossRef]

Miller, D.

Miller, D. A. B.

K. C. Balram and D. A. B. Miller, “Self-aligned silicon fins in metallic slits as a platform for planar wavelength-selective nanoscale resonant photodetectors,” Opt. Express20(20), 22735–22742 (2012).
[CrossRef] [PubMed]

J. R. Jain, A. Hryciw, T. M. Baer, D. A. B. Miller, M. L. Brongersma, and R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics6(6), 398–405 (2012).
[CrossRef]

J. R. Jain, D.-S. Ly-Gagnon, K. C. Balram, J. S. White, M. L. Brongersma, D. A. B. Miller, and R. T. Howe, “Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics,” Opt. Mater. Express1(6), 1121–1126 (2011).
[CrossRef]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

R. Chen, H. Chin, D. A. B. Miller, Kai Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett.17(6), 1271–1273 (2005).
[CrossRef]

Nam, D.

Nayfeh, A.

A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett.85(14), 2815–2817 (2004).
[CrossRef]

Nishi, Y.

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Raj, K.

Roucka, R.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menendez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron.47(2), 213–222 (2011).
[CrossRef]

Roy, A.

Sahni, S.

Saraswat, K.

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett.85(14), 2815–2817 (2004).
[CrossRef]

Shi, W. H.

C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004).
[CrossRef]

Shubin, I.

Sotiropoulos, A.

A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett.89(25), 252110 (2006).
[CrossRef]

Sukhdeo, D.

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Thacker, H.

Tolle, J.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menendez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron.47(2), 213–222 (2011).
[CrossRef]

Tsipas, P.

A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett.89(25), 252110 (2006).
[CrossRef]

Unlu, M. S.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Wada, K.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 11110 (2005).
[CrossRef]

Wang, Q. M.

C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004).
[CrossRef]

Weng, C.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menendez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron.47(2), 213–222 (2011).
[CrossRef]

White, J. S.

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Yao, J.

Yonehara, T.

A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett.85(14), 2815–2817 (2004).
[CrossRef]

Yu, J. Z.

C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004).
[CrossRef]

Yuan, Z.

Zhao, L.

C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004).
[CrossRef]

Zheng, X.

Zuo, Y. H.

C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004).
[CrossRef]

Appl. Phys. Lett.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87(1), 11110 (2005).
[CrossRef]

C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 µm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett.85(14), 2697–2699 (2004).
[CrossRef]

A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett.85(14), 2815–2817 (2004).
[CrossRef]

A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett.89(25), 252110 (2006).
[CrossRef]

IEEE J. Quantum Electron.

S. Y. Chou and M. Y. Liu, “Nanoscale tera-hertz metal-semiconductor-metal photodetectors,” IEEE J. Quantum Electron.28(10), 2358–2368 (1992).
[CrossRef]

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menendez, and J. Kouvetakis, “High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron.47(2), 213–222 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

R. Chen, H. Chin, D. A. B. Miller, Kai Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett.17(6), 1271–1273 (2005).
[CrossRef]

Nat. Photonics

J. R. Jain, A. Hryciw, T. M. Baer, D. A. B. Miller, M. L. Brongersma, and R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics6(6), 398–405 (2012).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

Nature

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater. Express

Proc. IEEE

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Science

M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science332(6025), 60–65 (2011).
[CrossRef] [PubMed]

Other

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems - OSA Technical Digest,” in Optical Fiber Communication Conference (Optical Society of America, 2012), OM2E.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the resonant-cavity-enhanced photodetector. A submicron Ge fin is self-aligned to an Au slit. The Au slit serves to both enhance absorption inside the Ge fin and extract photocurrent from the structure. (b) SEM image of a fabricated device in top view and (c) SEM image with sample tilted at 40.

Fig. 2
Fig. 2

(a) Plot of the electric field (Ez) profile inside a representative device (fin width of 975 nm) at resonance (λ = 1567 nm). (b) Simulated absorption cross-sections of devices with varying fin width (in nm) when excited with electric field polarization along the fin (Ez).

Fig. 3
Fig. 3

(a) Measured absorption spectra of devices with varying widths in two orthogonal polarizations Ez (continuous curves) and Ex (dashed curves). (b) Variation of the resonant wavelength with fin width for both simulations and experiment. (c) Measured responsivity of two devices with different widths (nm) at their resonant wavelengths (nm) (d) I-V characteristics of the 925 nm width device under dark and illuminated conditions.

Metrics