Abstract

We report a correction to the numerical procedure, in which the source vector lacked a factor 1/2 and the integration in Eq. (19) was incorrect. The errors are inconsequential for the main results.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved combined tangential formulation for electromagnetic analysis of penetrable bodies

D. M. Solís, J. M. Taboada, O. Rubiños-López, and F. Obelleiro
J. Opt. Soc. Am. B 32(9) 1780-1787 (2015)

Design method for electromagnetic cloak with arbitrary shapes based on Laplace’s equation: erratum

Jin Hu, Xiaoming Zhou, and Gengkai Hu
Opt. Express 17(15) 13070-13070 (2009)

Enforcing symmetries in boundary element formulation of plasmonic and second-harmonic scattering problems

Jouni Mäkitalo, Saku Suuriniemi, and Martti Kauranen
J. Opt. Soc. Am. A 31(12) 2821-2832 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles,” Opt. Express 19, 23386–23399 (2011)
    [Crossref] [PubMed]
  2. C. Forestiere, A. Capretti, and G. Miano, “Surface Integral Method for the Second Harmonic Generation in Metal Nanoparticles,” arXiv:1301.1880 [physics.optics] (2013)

2011 (1)

Capretti, A.

C. Forestiere, A. Capretti, and G. Miano, “Surface Integral Method for the Second Harmonic Generation in Metal Nanoparticles,” arXiv:1301.1880 [physics.optics] (2013)

Forestiere, C.

C. Forestiere, A. Capretti, and G. Miano, “Surface Integral Method for the Second Harmonic Generation in Metal Nanoparticles,” arXiv:1301.1880 [physics.optics] (2013)

Kauranen, M.

Mäkitalo, J.

Miano, G.

C. Forestiere, A. Capretti, and G. Miano, “Surface Integral Method for the Second Harmonic Generation in Metal Nanoparticles,” arXiv:1301.1880 [physics.optics] (2013)

Suuriniemi, S.

Opt. Express (1)

Other (1)

C. Forestiere, A. Capretti, and G. Miano, “Surface Integral Method for the Second Harmonic Generation in Metal Nanoparticles,” arXiv:1301.1880 [physics.optics] (2013)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (5)

Equations on this page are rendered with MathJax. Learn more.

𝒦 l f ( r ) = V l [ G l ( r , r ) ] × f ( r ) d S = 1 2 f ( r ) × n l + 𝒦 l f ( r ) ,
𝒦 l f ( r ) = lim a 0 V l D ( r , a ) [ G l ( r , r ) ] × f ( r ) d S
( 𝒟 1 J 1 S + 𝒦 1 M 1 S 𝒟 2 J 2 S 𝒦 2 M 2 S ) tan = 1 2 ε S P n S , ( 𝒦 1 J 1 S + 1 η 1 2 𝒟 1 M 1 S + 𝒦 2 J 2 S 1 η 2 2 𝒟 2 M 2 S ) tan = i 1 2 Ω P S × n .
S P n S = l = 1 N p l f l .
b m n 2 = 1 ε l p l S m S l f m n × f l d S ,

Metrics